MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2r Structured version   Visualization version   GIF version

Theorem lsmdisj2r 18079
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
lsmdisjr.i (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
lsmdisj2r.i (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
lsmdisj2r (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })

Proof of Theorem lsmdisj2r
StepHypRef Expression
1 eqid 2620 . . . . 5 (oppg𝐺) = (oppg𝐺)
2 lsmcntz.p . . . . 5 = (LSSum‘𝐺)
31, 2oppglsm 18038 . . . 4 (𝑈(LSSum‘(oppg𝐺))𝑆) = (𝑆 𝑈)
43ineq2i 3803 . . 3 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = (𝑇 ∩ (𝑆 𝑈))
5 incom 3797 . . 3 (𝑇 ∩ (𝑆 𝑈)) = ((𝑆 𝑈) ∩ 𝑇)
64, 5eqtri 2642 . 2 (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = ((𝑆 𝑈) ∩ 𝑇)
7 eqid 2620 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmcntz.u . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
91oppgsubg 17774 . . . 4 (SubGrp‘𝐺) = (SubGrp‘(oppg𝐺))
108, 9syl6eleq 2709 . . 3 (𝜑𝑈 ∈ (SubGrp‘(oppg𝐺)))
11 lsmcntz.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
1211, 9syl6eleq 2709 . . 3 (𝜑𝑇 ∈ (SubGrp‘(oppg𝐺)))
13 lsmcntz.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
1413, 9syl6eleq 2709 . . 3 (𝜑𝑆 ∈ (SubGrp‘(oppg𝐺)))
15 lsmdisj.o . . . 4 0 = (0g𝐺)
161, 15oppgid 17767 . . 3 0 = (0g‘(oppg𝐺))
171, 2oppglsm 18038 . . . . . 6 (𝑈(LSSum‘(oppg𝐺))𝑇) = (𝑇 𝑈)
1817ineq1i 3802 . . . . 5 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = ((𝑇 𝑈) ∩ 𝑆)
19 incom 3797 . . . . 5 ((𝑇 𝑈) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
2018, 19eqtri 2642 . . . 4 ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = (𝑆 ∩ (𝑇 𝑈))
21 lsmdisjr.i . . . 4 (𝜑 → (𝑆 ∩ (𝑇 𝑈)) = { 0 })
2220, 21syl5eq 2666 . . 3 (𝜑 → ((𝑈(LSSum‘(oppg𝐺))𝑇) ∩ 𝑆) = { 0 })
23 incom 3797 . . . 4 (𝑇𝑈) = (𝑈𝑇)
24 lsmdisj2r.i . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
2523, 24syl5eqr 2668 . . 3 (𝜑 → (𝑈𝑇) = { 0 })
267, 10, 12, 14, 16, 22, 25lsmdisj2 18076 . 2 (𝜑 → (𝑇 ∩ (𝑈(LSSum‘(oppg𝐺))𝑆)) = { 0 })
276, 26syl5eqr 2668 1 (𝜑 → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  cin 3566  {csn 4168  cfv 5876  (class class class)co 6635  0gc0g 16081  SubGrpcsubg 17569  oppgcoppg 17756  LSSumclsm 18030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-grp 17406  df-minusg 17407  df-subg 17572  df-oppg 17757  df-lsm 18032
This theorem is referenced by:  lsmdisj3r  18080  lsmdisj2b  18082
  Copyright terms: Public domain W3C validator