MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelval2 Structured version   Visualization version   GIF version

Theorem lsmelval2 19004
Description: Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.)
Hypotheses
Ref Expression
lsmelval2.v 𝑉 = (Base‘𝑊)
lsmelval2.s 𝑆 = (LSubSp‘𝑊)
lsmelval2.p = (LSSum‘𝑊)
lsmelval2.n 𝑁 = (LSpan‘𝑊)
lsmelval2.w (𝜑𝑊 ∈ LMod)
lsmelval2.t (𝜑𝑇𝑆)
lsmelval2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsmelval2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑊,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem lsmelval2
StepHypRef Expression
1 lsmelval2.w . . . . . 6 (𝜑𝑊 ∈ LMod)
2 lsmelval2.t . . . . . 6 (𝜑𝑇𝑆)
3 lsmelval2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
43lsssubg 18876 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
51, 2, 4syl2anc 692 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
6 lsmelval2.u . . . . . 6 (𝜑𝑈𝑆)
73lsssubg 18876 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
81, 6, 7syl2anc 692 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 eqid 2621 . . . . . 6 (+g𝑊) = (+g𝑊)
10 lsmelval2.p . . . . . 6 = (LSSum‘𝑊)
119, 10lsmelval 17985 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧)))
125, 8, 11syl2anc 692 . . . 4 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧)))
131adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑊 ∈ LMod)
142adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑇𝑆)
15 simprl 793 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑇)
16 lsmelval2.v . . . . . . . . . . . . . 14 𝑉 = (Base‘𝑊)
1716, 3lssel 18857 . . . . . . . . . . . . 13 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
1814, 15, 17syl2anc 692 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑉)
19 lsmelval2.n . . . . . . . . . . . . 13 𝑁 = (LSpan‘𝑊)
2016, 3, 19lspsncl 18896 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑁‘{𝑦}) ∈ 𝑆)
2113, 18, 20syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ∈ 𝑆)
223lsssubg 18876 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊))
2313, 21, 22syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊))
246adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑈𝑆)
25 simprr 795 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑈)
2616, 3lssel 18857 . . . . . . . . . . . . 13 ((𝑈𝑆𝑧𝑈) → 𝑧𝑉)
2724, 25, 26syl2anc 692 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑉)
2816, 3, 19lspsncl 18896 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → (𝑁‘{𝑧}) ∈ 𝑆)
2913, 27, 28syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ∈ 𝑆)
303lsssubg 18876 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑧}) ∈ 𝑆) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊))
3113, 29, 30syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊))
3216, 19lspsnid 18912 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → 𝑦 ∈ (𝑁‘{𝑦}))
3313, 18, 32syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦 ∈ (𝑁‘{𝑦}))
3416, 19lspsnid 18912 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → 𝑧 ∈ (𝑁‘{𝑧}))
3513, 27, 34syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧 ∈ (𝑁‘{𝑧}))
369, 10lsmelvali 17986 . . . . . . . . . 10 ((((𝑁‘{𝑦}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊)) ∧ (𝑦 ∈ (𝑁‘{𝑦}) ∧ 𝑧 ∈ (𝑁‘{𝑧}))) → (𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
3723, 31, 33, 35, 36syl22anc 1324 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
38 eleq1a 2693 . . . . . . . . 9 ((𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) → (𝑋 = (𝑦(+g𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
3937, 38syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 = (𝑦(+g𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
403, 10lsmcl 19002 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆 ∧ (𝑁‘{𝑧}) ∈ 𝑆) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ∈ 𝑆)
4113, 21, 29, 40syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ∈ 𝑆)
4216, 3, 19, 13, 41lspsnel6 18913 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4339, 42sylibd 229 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 = (𝑦(+g𝑊)𝑧) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4443anassrs 679 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑋 = (𝑦(+g𝑊)𝑧) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4544reximdva 3011 . . . . 5 ((𝜑𝑦𝑇) → (∃𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧) → ∃𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4645reximdva 3011 . . . 4 (𝜑 → (∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧) → ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4712, 46sylbid 230 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) → ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
485adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
493, 19, 13, 14, 15lspsnel5a 18915 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ⊆ 𝑇)
5010lsmless1 17995 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ 𝑇) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 (𝑁‘{𝑧})))
5148, 31, 49, 50syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 (𝑁‘{𝑧})))
528adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
533, 19, 13, 24, 25lspsnel5a 18915 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ⊆ 𝑈)
5410lsmless2 17996 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ⊆ 𝑈) → (𝑇 (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5548, 52, 53, 54syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑇 (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5651, 55sstrd 3593 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5756sseld 3582 . . . . 5 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) → 𝑋 ∈ (𝑇 𝑈)))
5842, 57sylbird 250 . . . 4 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 𝑈)))
5958rexlimdvva 3031 . . 3 (𝜑 → (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 𝑈)))
6047, 59impbid 202 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
61 r19.42v 3084 . . . 4 (∃𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6261rexbii 3034 . . 3 (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ ∃𝑦𝑇 (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
63 r19.42v 3084 . . 3 (∃𝑦𝑇 (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6462, 63bitri 264 . 2 (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6560, 64syl6bb 276 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  wss 3555  {csn 4148  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  SubGrpcsubg 17509  LSSumclsm 17970  LModclmod 18784  LSubSpclss 18851  LSpanclspn 18890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-lmod 18786  df-lss 18852  df-lsp 18891
This theorem is referenced by:  dihjat1lem  36197
  Copyright terms: Public domain W3C validator