MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalm Structured version   Visualization version   GIF version

Theorem lsmelvalm 18778
Description: Subgroup sum membership analogue of lsmelval 18776 using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmelvalm.m = (-g𝐺)
lsmelvalm.p = (LSSum‘𝐺)
lsmelvalm.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmelvalm.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
lsmelvalm (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝐺,𝑧   𝜑,𝑦,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧
Allowed substitution hints:   (𝑦,𝑧)

Proof of Theorem lsmelvalm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lsmelvalm.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 lsmelvalm.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 eqid 2823 . . . 4 (+g𝐺) = (+g𝐺)
4 lsmelvalm.p . . . 4 = (LSSum‘𝐺)
53, 4lsmelval 18776 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
61, 2, 5syl2anc 586 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
72adantr 483 . . . . . . . 8 ((𝜑𝑦𝑇) → 𝑈 ∈ (SubGrp‘𝐺))
8 eqid 2823 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
98subginvcl 18290 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
107, 9sylan 582 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ((invg𝐺)‘𝑥) ∈ 𝑈)
11 eqid 2823 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
12 lsmelvalm.m . . . . . . . . 9 = (-g𝐺)
13 subgrcl 18286 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
141, 13syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
1514ad2antrr 724 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝐺 ∈ Grp)
1611subgss 18282 . . . . . . . . . . . 12 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
171, 16syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝐺))
1817sselda 3969 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑦 ∈ (Base‘𝐺))
1918adantr 483 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑦 ∈ (Base‘𝐺))
2011subgss 18282 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
217, 20syl 17 . . . . . . . . . 10 ((𝜑𝑦𝑇) → 𝑈 ⊆ (Base‘𝐺))
2221sselda 3969 . . . . . . . . 9 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → 𝑥 ∈ (Base‘𝐺))
2311, 3, 12, 8, 15, 19, 22grpsubinv 18174 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦 ((invg𝐺)‘𝑥)) = (𝑦(+g𝐺)𝑥))
2423eqcomd 2829 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥)))
25 oveq2 7166 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑥) → (𝑦 𝑧) = (𝑦 ((invg𝐺)‘𝑥)))
2625rspceeqv 3640 . . . . . . 7 ((((invg𝐺)‘𝑥) ∈ 𝑈 ∧ (𝑦(+g𝐺)𝑥) = (𝑦 ((invg𝐺)‘𝑥))) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
2710, 24, 26syl2anc 586 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧))
28 eqeq1 2827 . . . . . . 7 (𝑋 = (𝑦(+g𝐺)𝑥) → (𝑋 = (𝑦 𝑧) ↔ (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
2928rexbidv 3299 . . . . . 6 (𝑋 = (𝑦(+g𝐺)𝑥) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) ↔ ∃𝑧𝑈 (𝑦(+g𝐺)𝑥) = (𝑦 𝑧)))
3027, 29syl5ibrcom 249 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑥𝑈) → (𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
3130rexlimdva 3286 . . . 4 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) → ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
328subginvcl 18290 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
337, 32sylan 582 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ((invg𝐺)‘𝑧) ∈ 𝑈)
3418adantr 483 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑦 ∈ (Base‘𝐺))
3521sselda 3969 . . . . . . . 8 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → 𝑧 ∈ (Base‘𝐺))
3611, 3, 8, 12grpsubval 18151 . . . . . . . 8 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3734, 35, 36syl2anc 586 . . . . . . 7 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
38 oveq2 7166 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑧) → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐺)((invg𝐺)‘𝑧)))
3938rspceeqv 3640 . . . . . . 7 ((((invg𝐺)‘𝑧) ∈ 𝑈 ∧ (𝑦 𝑧) = (𝑦(+g𝐺)((invg𝐺)‘𝑧))) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
4033, 37, 39syl2anc 586 . . . . . 6 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥))
41 eqeq1 2827 . . . . . . 7 (𝑋 = (𝑦 𝑧) → (𝑋 = (𝑦(+g𝐺)𝑥) ↔ (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4241rexbidv 3299 . . . . . 6 (𝑋 = (𝑦 𝑧) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑥𝑈 (𝑦 𝑧) = (𝑦(+g𝐺)𝑥)))
4340, 42syl5ibrcom 249 . . . . 5 (((𝜑𝑦𝑇) ∧ 𝑧𝑈) → (𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4443rexlimdva 3286 . . . 4 ((𝜑𝑦𝑇) → (∃𝑧𝑈 𝑋 = (𝑦 𝑧) → ∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥)))
4531, 44impbid 214 . . 3 ((𝜑𝑦𝑇) → (∃𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑧𝑈 𝑋 = (𝑦 𝑧)))
4645rexbidva 3298 . 2 (𝜑 → (∃𝑦𝑇𝑥𝑈 𝑋 = (𝑦(+g𝐺)𝑥) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
476, 46bitrd 281 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  wss 3938  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Grpcgrp 18105  invgcminusg 18106  -gcsg 18107  SubGrpcsubg 18275  LSSumclsm 18761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-lsm 18763
This theorem is referenced by:  lsmelvalmi  18779  pgpfac1lem2  19199  pgpfac1lem3  19201  pgpfac1lem4  19202  mapdpglem3  38813
  Copyright terms: Public domain W3C validator