Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalx Structured version   Visualization version   GIF version

Theorem lsmelvalx 18049
 Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval 18058. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
Distinct variable groups:   𝑦,𝑧, +   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧   𝑦,𝑋,𝑧   𝑦,𝐺,𝑧   𝑦,𝑈,𝑧
Allowed substitution hints:   (𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem lsmelvalx
StepHypRef Expression
1 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . 4 + = (+g𝐺)
3 lsmfval.s . . . 4 = (LSSum‘𝐺)
41, 2, 3lsmvalx 18048 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)))
54eleq2d 2686 . 2 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ 𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))))
6 eqid 2621 . . 3 (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) = (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧))
7 ovex 6675 . . 3 (𝑦 + 𝑧) ∈ V
86, 7elrnmpt2 6770 . 2 (𝑋 ∈ ran (𝑦𝑇, 𝑧𝑈 ↦ (𝑦 + 𝑧)) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧))
95, 8syl6bb 276 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦 + 𝑧)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989  ∃wrex 2912   ⊆ wss 3572  ran crn 5113  ‘cfv 5886  (class class class)co 6647   ↦ cmpt2 6649  Basecbs 15851  +gcplusg 15935  LSSumclsm 18043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-lsm 18045 This theorem is referenced by:  lsmelvalix  18050  lsmless1x  18053  lsmless2x  18054  lsmelval  18058  lsmsubm  18062  lsmass  18077  lsmcomx  18253  lsmcss  20030
 Copyright terms: Public domain W3C validator