Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmfgcl Structured version   Visualization version   GIF version

Theorem lsmfgcl 39667
Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
lsmfgcl.u 𝑈 = (LSubSp‘𝑊)
lsmfgcl.p = (LSSum‘𝑊)
lsmfgcl.d 𝐷 = (𝑊s 𝐴)
lsmfgcl.e 𝐸 = (𝑊s 𝐵)
lsmfgcl.f 𝐹 = (𝑊s (𝐴 𝐵))
lsmfgcl.w (𝜑𝑊 ∈ LMod)
lsmfgcl.a (𝜑𝐴𝑈)
lsmfgcl.b (𝜑𝐵𝑈)
lsmfgcl.df (𝜑𝐷 ∈ LFinGen)
lsmfgcl.ef (𝜑𝐸 ∈ LFinGen)
Assertion
Ref Expression
lsmfgcl (𝜑𝐹 ∈ LFinGen)

Proof of Theorem lsmfgcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfgcl.f . 2 𝐹 = (𝑊s (𝐴 𝐵))
2 lsmfgcl.df . . . 4 (𝜑𝐷 ∈ LFinGen)
3 lsmfgcl.w . . . . 5 (𝜑𝑊 ∈ LMod)
4 lsmfgcl.a . . . . 5 (𝜑𝐴𝑈)
5 lsmfgcl.d . . . . . 6 𝐷 = (𝑊s 𝐴)
6 lsmfgcl.u . . . . . 6 𝑈 = (LSubSp‘𝑊)
7 eqid 2821 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
8 eqid 2821 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
95, 6, 7, 8islssfg2 39664 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑈) → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
103, 4, 9syl2anc 586 . . . 4 (𝜑 → (𝐷 ∈ LFinGen ↔ ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴))
112, 10mpbid 234 . . 3 (𝜑 → ∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴)
12 lsmfgcl.ef . . . . . . . 8 (𝜑𝐸 ∈ LFinGen)
13 lsmfgcl.b . . . . . . . . 9 (𝜑𝐵𝑈)
14 lsmfgcl.e . . . . . . . . . 10 𝐸 = (𝑊s 𝐵)
1514, 6, 7, 8islssfg2 39664 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐵𝑈) → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
163, 13, 15syl2anc 586 . . . . . . . 8 (𝜑 → (𝐸 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵))
1712, 16mpbid 234 . . . . . . 7 (𝜑 → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
1817adantr 483 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵)
19 inss1 4204 . . . . . . . . . . . . . . 15 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
2019sseli 3962 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ 𝒫 (Base‘𝑊))
2120elpwid 4552 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ⊆ (Base‘𝑊))
2219sseli 3962 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ 𝒫 (Base‘𝑊))
2322elpwid 4552 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ⊆ (Base‘𝑊))
24 lsmfgcl.p . . . . . . . . . . . . . 14 = (LSSum‘𝑊)
258, 7, 24lsmsp2 19853 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
263, 21, 23, 25syl3an 1156 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
27263expb 1116 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = ((LSpan‘𝑊)‘(𝑎𝑏)))
2827oveq2d 7166 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))))
293adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → 𝑊 ∈ LMod)
30 unss 4159 . . . . . . . . . . . . . 14 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) ↔ (𝑎𝑏) ⊆ (Base‘𝑊))
3130biimpi 218 . . . . . . . . . . . . 13 ((𝑎 ⊆ (Base‘𝑊) ∧ 𝑏 ⊆ (Base‘𝑊)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3221, 23, 31syl2an 597 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ⊆ (Base‘𝑊))
3332adantl 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ⊆ (Base‘𝑊))
34 inss2 4205 . . . . . . . . . . . . . 14 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ Fin
3534sseli 3962 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑎 ∈ Fin)
3634sseli 3962 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) → 𝑏 ∈ Fin)
37 unfi 8779 . . . . . . . . . . . . 13 ((𝑎 ∈ Fin ∧ 𝑏 ∈ Fin) → (𝑎𝑏) ∈ Fin)
3835, 36, 37syl2an 597 . . . . . . . . . . . 12 ((𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑎𝑏) ∈ Fin)
3938adantl 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑎𝑏) ∈ Fin)
40 eqid 2821 . . . . . . . . . . . 12 (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) = (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏)))
417, 8, 40islssfgi 39665 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑎𝑏) ⊆ (Base‘𝑊) ∧ (𝑎𝑏) ∈ Fin) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4229, 33, 39, 41syl3anc 1367 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s ((LSpan‘𝑊)‘(𝑎𝑏))) ∈ LFinGen)
4328, 42eqeltrd 2913 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin))) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
4443anassrs 470 . . . . . . . 8 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen)
45 oveq2 7158 . . . . . . . . . 10 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏)) = (((LSpan‘𝑊)‘𝑎) 𝐵))
4645oveq2d 7166 . . . . . . . . 9 (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) = (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)))
4746eleq1d 2897 . . . . . . . 8 (((LSpan‘𝑊)‘𝑏) = 𝐵 → ((𝑊s (((LSpan‘𝑊)‘𝑎) ((LSpan‘𝑊)‘𝑏))) ∈ LFinGen ↔ (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4844, 47syl5ibcom 247 . . . . . . 7 (((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) ∧ 𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
4948rexlimdva 3284 . . . . . 6 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑏) = 𝐵 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen))
5018, 49mpd 15 . . . . 5 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen)
51 oveq1 7157 . . . . . . 7 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (((LSpan‘𝑊)‘𝑎) 𝐵) = (𝐴 𝐵))
5251oveq2d 7166 . . . . . 6 (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) = (𝑊s (𝐴 𝐵)))
5352eleq1d 2897 . . . . 5 (((LSpan‘𝑊)‘𝑎) = 𝐴 → ((𝑊s (((LSpan‘𝑊)‘𝑎) 𝐵)) ∈ LFinGen ↔ (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5450, 53syl5ibcom 247 . . . 4 ((𝜑𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)) → (((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5554rexlimdva 3284 . . 3 (𝜑 → (∃𝑎 ∈ (𝒫 (Base‘𝑊) ∩ Fin)((LSpan‘𝑊)‘𝑎) = 𝐴 → (𝑊s (𝐴 𝐵)) ∈ LFinGen))
5611, 55mpd 15 . 2 (𝜑 → (𝑊s (𝐴 𝐵)) ∈ LFinGen)
571, 56eqeltrid 2917 1 (𝜑𝐹 ∈ LFinGen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  cun 3933  cin 3934  wss 3935  𝒫 cpw 4538  cfv 6349  (class class class)co 7150  Fincfn 8503  Basecbs 16477  s cress 16478  LSSumclsm 18753  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LFinGenclfig 39660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-sca 16575  df-vsca 16576  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lfig 39661
This theorem is referenced by:  lmhmfgsplit  39679
  Copyright terms: Public domain W3C validator