MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmhash Structured version   Visualization version   GIF version

Theorem lsmhash 18825
Description: The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmhash.p = (LSSum‘𝐺)
lsmhash.o 0 = (0g𝐺)
lsmhash.z 𝑍 = (Cntz‘𝐺)
lsmhash.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmhash.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmhash.i (𝜑 → (𝑇𝑈) = { 0 })
lsmhash.s (𝜑𝑇 ⊆ (𝑍𝑈))
lsmhash.1 (𝜑𝑇 ∈ Fin)
lsmhash.2 (𝜑𝑈 ∈ Fin)
Assertion
Ref Expression
lsmhash (𝜑 → (♯‘(𝑇 𝑈)) = ((♯‘𝑇) · (♯‘𝑈)))

Proof of Theorem lsmhash
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7185 . . . 4 (𝜑 → (𝑇 𝑈) ∈ V)
2 lsmhash.t . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3 lsmhash.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
42, 3xpexd 7468 . . . 4 (𝜑 → (𝑇 × 𝑈) ∈ V)
5 eqid 2821 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmhash.p . . . . . . . 8 = (LSSum‘𝐺)
7 lsmhash.o . . . . . . . 8 0 = (0g𝐺)
8 lsmhash.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
9 lsmhash.i . . . . . . . 8 (𝜑 → (𝑇𝑈) = { 0 })
10 lsmhash.s . . . . . . . 8 (𝜑𝑇 ⊆ (𝑍𝑈))
11 eqid 2821 . . . . . . . 8 (proj1𝐺) = (proj1𝐺)
125, 6, 7, 8, 2, 3, 9, 10, 11pj1f 18817 . . . . . . 7 (𝜑 → (𝑇(proj1𝐺)𝑈):(𝑇 𝑈)⟶𝑇)
1312ffvelrnda 6846 . . . . . 6 ((𝜑𝑥 ∈ (𝑇 𝑈)) → ((𝑇(proj1𝐺)𝑈)‘𝑥) ∈ 𝑇)
145, 6, 7, 8, 2, 3, 9, 10, 11pj2f 18818 . . . . . . 7 (𝜑 → (𝑈(proj1𝐺)𝑇):(𝑇 𝑈)⟶𝑈)
1514ffvelrnda 6846 . . . . . 6 ((𝜑𝑥 ∈ (𝑇 𝑈)) → ((𝑈(proj1𝐺)𝑇)‘𝑥) ∈ 𝑈)
1613, 15opelxpd 5588 . . . . 5 ((𝜑𝑥 ∈ (𝑇 𝑈)) → ⟨((𝑇(proj1𝐺)𝑈)‘𝑥), ((𝑈(proj1𝐺)𝑇)‘𝑥)⟩ ∈ (𝑇 × 𝑈))
1716ex 415 . . . 4 (𝜑 → (𝑥 ∈ (𝑇 𝑈) → ⟨((𝑇(proj1𝐺)𝑈)‘𝑥), ((𝑈(proj1𝐺)𝑇)‘𝑥)⟩ ∈ (𝑇 × 𝑈)))
182, 3jca 514 . . . . . 6 (𝜑 → (𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)))
19 xp1st 7715 . . . . . . 7 (𝑦 ∈ (𝑇 × 𝑈) → (1st𝑦) ∈ 𝑇)
20 xp2nd 7716 . . . . . . 7 (𝑦 ∈ (𝑇 × 𝑈) → (2nd𝑦) ∈ 𝑈)
2119, 20jca 514 . . . . . 6 (𝑦 ∈ (𝑇 × 𝑈) → ((1st𝑦) ∈ 𝑇 ∧ (2nd𝑦) ∈ 𝑈))
225, 6lsmelvali 18769 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ ((1st𝑦) ∈ 𝑇 ∧ (2nd𝑦) ∈ 𝑈)) → ((1st𝑦)(+g𝐺)(2nd𝑦)) ∈ (𝑇 𝑈))
2318, 21, 22syl2an 597 . . . . 5 ((𝜑𝑦 ∈ (𝑇 × 𝑈)) → ((1st𝑦)(+g𝐺)(2nd𝑦)) ∈ (𝑇 𝑈))
2423ex 415 . . . 4 (𝜑 → (𝑦 ∈ (𝑇 × 𝑈) → ((1st𝑦)(+g𝐺)(2nd𝑦)) ∈ (𝑇 𝑈)))
252adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → 𝑇 ∈ (SubGrp‘𝐺))
263adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → 𝑈 ∈ (SubGrp‘𝐺))
279adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (𝑇𝑈) = { 0 })
2810adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → 𝑇 ⊆ (𝑍𝑈))
29 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → 𝑥 ∈ (𝑇 𝑈))
3019ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (1st𝑦) ∈ 𝑇)
3120ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (2nd𝑦) ∈ 𝑈)
325, 6, 7, 8, 25, 26, 27, 28, 11, 29, 30, 31pj1eq 18820 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (𝑥 = ((1st𝑦)(+g𝐺)(2nd𝑦)) ↔ (((𝑇(proj1𝐺)𝑈)‘𝑥) = (1st𝑦) ∧ ((𝑈(proj1𝐺)𝑇)‘𝑥) = (2nd𝑦))))
33 eqcom 2828 . . . . . . . 8 (((𝑇(proj1𝐺)𝑈)‘𝑥) = (1st𝑦) ↔ (1st𝑦) = ((𝑇(proj1𝐺)𝑈)‘𝑥))
34 eqcom 2828 . . . . . . . 8 (((𝑈(proj1𝐺)𝑇)‘𝑥) = (2nd𝑦) ↔ (2nd𝑦) = ((𝑈(proj1𝐺)𝑇)‘𝑥))
3533, 34anbi12i 628 . . . . . . 7 ((((𝑇(proj1𝐺)𝑈)‘𝑥) = (1st𝑦) ∧ ((𝑈(proj1𝐺)𝑇)‘𝑥) = (2nd𝑦)) ↔ ((1st𝑦) = ((𝑇(proj1𝐺)𝑈)‘𝑥) ∧ (2nd𝑦) = ((𝑈(proj1𝐺)𝑇)‘𝑥)))
3632, 35syl6bb 289 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (𝑥 = ((1st𝑦)(+g𝐺)(2nd𝑦)) ↔ ((1st𝑦) = ((𝑇(proj1𝐺)𝑈)‘𝑥) ∧ (2nd𝑦) = ((𝑈(proj1𝐺)𝑇)‘𝑥))))
37 eqop 7725 . . . . . . 7 (𝑦 ∈ (𝑇 × 𝑈) → (𝑦 = ⟨((𝑇(proj1𝐺)𝑈)‘𝑥), ((𝑈(proj1𝐺)𝑇)‘𝑥)⟩ ↔ ((1st𝑦) = ((𝑇(proj1𝐺)𝑈)‘𝑥) ∧ (2nd𝑦) = ((𝑈(proj1𝐺)𝑇)‘𝑥))))
3837ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (𝑦 = ⟨((𝑇(proj1𝐺)𝑈)‘𝑥), ((𝑈(proj1𝐺)𝑇)‘𝑥)⟩ ↔ ((1st𝑦) = ((𝑇(proj1𝐺)𝑈)‘𝑥) ∧ (2nd𝑦) = ((𝑈(proj1𝐺)𝑇)‘𝑥))))
3936, 38bitr4d 284 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈))) → (𝑥 = ((1st𝑦)(+g𝐺)(2nd𝑦)) ↔ 𝑦 = ⟨((𝑇(proj1𝐺)𝑈)‘𝑥), ((𝑈(proj1𝐺)𝑇)‘𝑥)⟩))
4039ex 415 . . . 4 (𝜑 → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 × 𝑈)) → (𝑥 = ((1st𝑦)(+g𝐺)(2nd𝑦)) ↔ 𝑦 = ⟨((𝑇(proj1𝐺)𝑈)‘𝑥), ((𝑈(proj1𝐺)𝑇)‘𝑥)⟩)))
411, 4, 17, 24, 40en3d 8540 . . 3 (𝜑 → (𝑇 𝑈) ≈ (𝑇 × 𝑈))
42 hasheni 13702 . . 3 ((𝑇 𝑈) ≈ (𝑇 × 𝑈) → (♯‘(𝑇 𝑈)) = (♯‘(𝑇 × 𝑈)))
4341, 42syl 17 . 2 (𝜑 → (♯‘(𝑇 𝑈)) = (♯‘(𝑇 × 𝑈)))
44 lsmhash.1 . . 3 (𝜑𝑇 ∈ Fin)
45 lsmhash.2 . . 3 (𝜑𝑈 ∈ Fin)
46 hashxp 13789 . . 3 ((𝑇 ∈ Fin ∧ 𝑈 ∈ Fin) → (♯‘(𝑇 × 𝑈)) = ((♯‘𝑇) · (♯‘𝑈)))
4744, 45, 46syl2anc 586 . 2 (𝜑 → (♯‘(𝑇 × 𝑈)) = ((♯‘𝑇) · (♯‘𝑈)))
4843, 47eqtrd 2856 1 (𝜑 → (♯‘(𝑇 𝑈)) = ((♯‘𝑇) · (♯‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cin 3935  wss 3936  {csn 4561  cop 4567   class class class wbr 5059   × cxp 5548  cfv 6350  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  cen 8500  Fincfn 8503   · cmul 10536  chash 13684  +gcplusg 16559  0gc0g 16707  SubGrpcsubg 18267  Cntzccntz 18439  LSSumclsm 18753  proj1cpj1 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-pj1 18756
This theorem is referenced by:  ablfacrp2  19183  ablfac1eulem  19188  ablfac1eu  19189  pgpfaclem2  19198
  Copyright terms: Public domain W3C validator