Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsatcv Structured version   Visualization version   GIF version

Theorem lsmsatcv 34615
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 28639 analog.) Explicit atom version of lsmcv 19189. (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lsmsatcv.s 𝑆 = (LSubSp‘𝑊)
lsmsatcv.p = (LSSum‘𝑊)
lsmsatcv.a 𝐴 = (LSAtoms‘𝑊)
lsmsatcv.w (𝜑𝑊 ∈ LVec)
lsmsatcv.t (𝜑𝑇𝑆)
lsmsatcv.u (𝜑𝑈𝑆)
lsmsatcv.x (𝜑𝑄𝐴)
Assertion
Ref Expression
lsmsatcv ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))

Proof of Theorem lsmsatcv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsmsatcv.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lsmsatcv.x . . . 4 (𝜑𝑄𝐴)
3 eqid 2651 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2651 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsmsatcv.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
63, 4, 5islsati 34599 . . . 4 ((𝑊 ∈ LVec ∧ 𝑄𝐴) → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
71, 2, 6syl2anc 694 . . 3 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}))
8 lsmsatcv.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
9 lsmsatcv.p . . . . . . . 8 = (LSSum‘𝑊)
101adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
11 lsmsatcv.t . . . . . . . . 9 (𝜑𝑇𝑆)
1211adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇𝑆)
13 lsmsatcv.u . . . . . . . . 9 (𝜑𝑈𝑆)
1413adantr 480 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈𝑆)
15 simpr 476 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
163, 8, 4, 9, 10, 12, 14, 15lsmcv 19189 . . . . . . 7 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
17163expib 1287 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
18173adant3 1101 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
19 oveq2 6698 . . . . . . . . 9 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑇 𝑄) = (𝑇 ((LSpan‘𝑊)‘{𝑣})))
2019sseq2d 3666 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊆ (𝑇 𝑄) ↔ 𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2120anbi2d 740 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) ↔ (𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2219eqeq2d 2661 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 = (𝑇 𝑄) ↔ 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣}))))
2321, 22imbi12d 333 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
24233ad2ant3 1104 . . . . 5 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → (((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)) ↔ ((𝑇𝑈𝑈 ⊆ (𝑇 ((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇 ((LSpan‘𝑊)‘{𝑣})))))
2518, 24mpbird 247 . . . 4 ((𝜑𝑣 ∈ (Base‘𝑊) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑣})) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
2625rexlimdv3a 3062 . . 3 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)𝑄 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))))
277, 26mpd 15 . 2 (𝜑 → ((𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄)))
28273impib 1281 1 ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  wss 3607  wpss 3608  {csn 4210  cfv 5926  (class class class)co 6690  Basecbs 15904  LSSumclsm 18095  LSubSpclss 18980  LSpanclspn 19019  LVecclvec 19150  LSAtomsclsa 34579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-lsm 18097  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151  df-lsatoms 34581
This theorem is referenced by:  dochsat  36989
  Copyright terms: Public domain W3C validator