![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmsp | Structured version Visualization version GIF version |
Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lsmsp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsmsp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsmsp.p | ⊢ ⊕ = (LSSum‘𝑊) |
Ref | Expression |
---|---|
lsmsp | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
2 | eqid 2752 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lsmsp.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssss 19131 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑆 → 𝑇 ⊆ (Base‘𝑊)) |
5 | 4 | 3ad2ant2 1128 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (Base‘𝑊)) |
6 | 2, 3 | lssss 19131 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
7 | 6 | 3ad2ant3 1129 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
8 | 5, 7 | unssd 3924 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) |
9 | lsmsp.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 2, 9 | lspssid 19179 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
11 | 1, 8, 10 | syl2anc 696 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
12 | 11 | unssad 3925 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
13 | 11 | unssbd 3926 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
14 | 3 | lsssssubg 19152 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
15 | 14 | 3ad2ant1 1127 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝑊)) |
16 | simp2 1131 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ 𝑆) | |
17 | 15, 16 | sseldd 3737 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ (SubGrp‘𝑊)) |
18 | simp3 1132 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ 𝑆) | |
19 | 15, 18 | sseldd 3737 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
20 | 2, 3, 9 | lspcl 19170 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
21 | 1, 8, 20 | syl2anc 696 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
22 | 15, 21 | sseldd 3737 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) |
23 | lsmsp.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
24 | 23 | lsmlub 18270 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
25 | 17, 19, 22, 24 | syl3anc 1473 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
26 | 12, 13, 25 | mpbi2and 994 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
27 | 3, 23 | lsmcl 19277 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
28 | 23 | lsmunss 18265 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
29 | 17, 19, 28 | syl2anc 696 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
30 | 3, 9 | lspssp 19182 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝑆 ∧ (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
31 | 1, 27, 29, 30 | syl3anc 1473 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
32 | 26, 31 | eqssd 3753 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∪ cun 3705 ⊆ wss 3707 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 SubGrpcsubg 17781 LSSumclsm 18241 LModclmod 19057 LSubSpclss 19126 LSpanclspn 19165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-submnd 17529 df-grp 17618 df-minusg 17619 df-sbg 17620 df-subg 17784 df-cntz 17942 df-lsm 18243 df-cmn 18387 df-abl 18388 df-mgp 18682 df-ur 18694 df-ring 18741 df-lmod 19059 df-lss 19127 df-lsp 19166 |
This theorem is referenced by: lsmsp2 19281 lsmpr 19283 lsppr 19287 islshpsm 34762 lshpnel2N 34767 lkrlsp3 34886 djhlsmcl 37197 dochsatshp 37234 |
Copyright terms: Public domain | W3C validator |