MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsp Structured version   Visualization version   GIF version

Theorem lsmsp 19787
Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.)
Hypotheses
Ref Expression
lsmsp.s 𝑆 = (LSubSp‘𝑊)
lsmsp.n 𝑁 = (LSpan‘𝑊)
lsmsp.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmsp ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑁‘(𝑇𝑈)))

Proof of Theorem lsmsp
StepHypRef Expression
1 simp1 1128 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ LMod)
2 eqid 2818 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
3 lsmsp.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
42, 3lssss 19637 . . . . . . 7 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
543ad2ant2 1126 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝑊))
62, 3lssss 19637 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
763ad2ant3 1127 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
85, 7unssd 4159 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ⊆ (Base‘𝑊))
9 lsmsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
102, 9lspssid 19686 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ (Base‘𝑊)) → (𝑇𝑈) ⊆ (𝑁‘(𝑇𝑈)))
111, 8, 10syl2anc 584 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1211unssad 4160 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (𝑁‘(𝑇𝑈)))
1311unssbd 4161 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (𝑁‘(𝑇𝑈)))
143lsssssubg 19659 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
15143ad2ant1 1125 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1129 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇𝑆)
1715, 16sseldd 3965 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
18 simp3 1130 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈𝑆)
1915, 18sseldd 3965 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
202, 3, 9lspcl 19677 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇𝑈)) ∈ 𝑆)
211, 8, 20syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑁‘(𝑇𝑈)) ∈ 𝑆)
2215, 21sseldd 3965 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑁‘(𝑇𝑈)) ∈ (SubGrp‘𝑊))
23 lsmsp.p . . . . 5 = (LSSum‘𝑊)
2423lsmlub 18719 . . . 4 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇𝑈))) ↔ (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈))))
2517, 19, 22, 24syl3anc 1363 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇𝑈))) ↔ (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈))))
2612, 13, 25mpbi2and 708 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))
273, 23lsmcl 19784 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
2823lsmunss 18713 . . . 4 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇𝑈) ⊆ (𝑇 𝑈))
2917, 19, 28syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ⊆ (𝑇 𝑈))
303, 9lspssp 19689 . . 3 ((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝑆 ∧ (𝑇𝑈) ⊆ (𝑇 𝑈)) → (𝑁‘(𝑇𝑈)) ⊆ (𝑇 𝑈))
311, 27, 29, 30syl3anc 1363 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑁‘(𝑇𝑈)) ⊆ (𝑇 𝑈))
3226, 31eqssd 3981 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑁‘(𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  cun 3931  wss 3933  cfv 6348  (class class class)co 7145  Basecbs 16471  SubGrpcsubg 18211  LSSumclsm 18688  LModclmod 19563  LSubSpclss 19632  LSpanclspn 19672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-lmod 19565  df-lss 19633  df-lsp 19673
This theorem is referenced by:  lsmsp2  19788  lsmpr  19790  lsppr  19794  islshpsm  35996  lshpnel2N  36001  lkrlsp3  36120  djhlsmcl  38430  dochsatshp  38467
  Copyright terms: Public domain W3C validator