MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmspsn Structured version   Visualization version   GIF version

Theorem lsmspsn 19858
Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015.)
Hypotheses
Ref Expression
lsmspsn.v 𝑉 = (Base‘𝑊)
lsmspsn.a + = (+g𝑊)
lsmspsn.f 𝐹 = (Scalar‘𝑊)
lsmspsn.k 𝐾 = (Base‘𝐹)
lsmspsn.t · = ( ·𝑠𝑊)
lsmspsn.p = (LSSum‘𝑊)
lsmspsn.n 𝑁 = (LSpan‘𝑊)
lsmspsn.w (𝜑𝑊 ∈ LMod)
lsmspsn.x (𝜑𝑋𝑉)
lsmspsn.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsmspsn (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Distinct variable groups:   𝑗,𝑘, +   𝑗,𝐹,𝑘   𝑗,𝐾,𝑘   𝑗,𝑁,𝑘   · ,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑉,𝑘   𝑗,𝑊,𝑘   𝑗,𝑋,𝑘   𝑗,𝑌,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   (𝑗,𝑘)

Proof of Theorem lsmspsn
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmspsn.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmspsn.x . . . 4 (𝜑𝑋𝑉)
3 lsmspsn.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsmspsn.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 19754 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 586 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsmspsn.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 19754 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 586 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsmspsn.a . . . 4 + = (+g𝑊)
11 lsmspsn.p . . . 4 = (LSSum‘𝑊)
1210, 11lsmelval 18776 . . 3 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
136, 9, 12syl2anc 586 . 2 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤)))
14 lsmspsn.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
15 lsmspsn.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
16 lsmspsn.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
1714, 15, 3, 16, 4lspsnel 19777 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
181, 2, 17syl2anc 586 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑗𝐾 𝑣 = (𝑗 · 𝑋)))
1914, 15, 3, 16, 4lspsnel 19777 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
201, 7, 19syl2anc 586 . . . . . . . 8 (𝜑 → (𝑤 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2118, 20anbi12d 632 . . . . . . 7 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌})) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌))))
2221biimpa 479 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2322biantrurd 535 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
24 r19.41v 3349 . . . . . . 7 (∃𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2524rexbii 3249 . . . . . 6 (∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
26 r19.41v 3349 . . . . . 6 (∃𝑗𝐾 (∃𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
27 reeanv 3369 . . . . . . 7 (∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ↔ (∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)))
2827anbi1i 625 . . . . . 6 ((∃𝑗𝐾𝑘𝐾 (𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
2925, 26, 283bitrri 300 . . . . 5 (((∃𝑗𝐾 𝑣 = (𝑗 · 𝑋) ∧ ∃𝑘𝐾 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3023, 29syl6bb 289 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑤 ∈ (𝑁‘{𝑌}))) → (𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
31302rexbidva 3301 . . 3 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
32 rexrot4 3364 . . 3 (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})∃𝑗𝐾𝑘𝐾 ((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)))
3331, 32syl6bb 289 . 2 (𝜑 → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})𝑈 = (𝑣 + 𝑤) ↔ ∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤))))
341adantr 483 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑊 ∈ LMod)
35 simprl 769 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑗𝐾)
362adantr 483 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑋𝑉)
373, 16, 14, 15, 4, 34, 35, 36lspsneli 19775 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑗 · 𝑋) ∈ (𝑁‘{𝑋}))
38 simprr 771 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑘𝐾)
397adantr 483 . . . . 5 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → 𝑌𝑉)
403, 16, 14, 15, 4, 34, 38, 39lspsneli 19775 . . . 4 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (𝑘 · 𝑌) ∈ (𝑁‘{𝑌}))
41 oveq1 7165 . . . . . 6 (𝑣 = (𝑗 · 𝑋) → (𝑣 + 𝑤) = ((𝑗 · 𝑋) + 𝑤))
4241eqeq2d 2834 . . . . 5 (𝑣 = (𝑗 · 𝑋) → (𝑈 = (𝑣 + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + 𝑤)))
43 oveq2 7166 . . . . . 6 (𝑤 = (𝑘 · 𝑌) → ((𝑗 · 𝑋) + 𝑤) = ((𝑗 · 𝑋) + (𝑘 · 𝑌)))
4443eqeq2d 2834 . . . . 5 (𝑤 = (𝑘 · 𝑌) → (𝑈 = ((𝑗 · 𝑋) + 𝑤) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4542, 44ceqsrex2v 3653 . . . 4 (((𝑗 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝑘 · 𝑌) ∈ (𝑁‘{𝑌})) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4637, 40, 45syl2anc 586 . . 3 ((𝜑 ∧ (𝑗𝐾𝑘𝐾)) → (∃𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
47462rexbidva 3301 . 2 (𝜑 → (∃𝑗𝐾𝑘𝐾𝑣 ∈ (𝑁‘{𝑋})∃𝑤 ∈ (𝑁‘{𝑌})((𝑣 = (𝑗 · 𝑋) ∧ 𝑤 = (𝑘 · 𝑌)) ∧ 𝑈 = (𝑣 + 𝑤)) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
4813, 33, 473bitrd 307 1 (𝜑 → (𝑈 ∈ ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ↔ ∃𝑗𝐾𝑘𝐾 𝑈 = ((𝑗 · 𝑋) + (𝑘 · 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570   ·𝑠 cvsca 16571  SubGrpcsubg 18275  LSSumclsm 18761  LModclmod 19636  LSpanclspn 19745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-lsm 18763  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706  df-lsp 19746
This theorem is referenced by:  lsppr  19867  baerlem3lem2  38848  baerlem5alem2  38849  baerlem5blem2  38850
  Copyright terms: Public domain W3C validator