MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubg Structured version   Visualization version   GIF version

Theorem lsmsubg 18773
Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubg ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))

Proof of Theorem lsmsubg
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
2 subgsubm 18295 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ∈ (SubMnd‘𝐺))
31, 2syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ∈ (SubMnd‘𝐺))
4 simp2 1133 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
5 subgsubm 18295 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ∈ (SubMnd‘𝐺))
64, 5syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
7 simp3 1134 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑍𝑈))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
9 lsmsubg.z . . . 4 𝑍 = (Cntz‘𝐺)
108, 9lsmsubm 18772 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
113, 6, 7, 10syl3anc 1367 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
12 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
1312, 8lsmelval 18768 . . . . 5 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
14133adant3 1128 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
151adantr 483 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
16 subgrcl 18278 . . . . . . . . . 10 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝐺 ∈ Grp)
18 eqid 2821 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
1918subgss 18274 . . . . . . . . . . 11 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
2015, 19syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (Base‘𝐺))
21 simprl 769 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎𝑇)
2220, 21sseldd 3967 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎 ∈ (Base‘𝐺))
234adantr 483 . . . . . . . . . . 11 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
2418subgss 18274 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
2523, 24syl 17 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑈 ⊆ (Base‘𝐺))
26 simprr 771 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏𝑈)
2725, 26sseldd 3967 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏 ∈ (Base‘𝐺))
28 eqid 2821 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
2918, 12, 28grpinvadd 18171 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3017, 22, 27, 29syl3anc 1367 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
317adantr 483 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑇 ⊆ (𝑍𝑈))
3228subginvcl 18282 . . . . . . . . . . 11 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑇) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3315, 21, 32syl2anc 586 . . . . . . . . . 10 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ 𝑇)
3431, 33sseldd 3967 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑎) ∈ (𝑍𝑈))
3528subginvcl 18282 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑏𝑈) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3623, 26, 35syl2anc 586 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘𝑏) ∈ 𝑈)
3712, 9cntzi 18453 . . . . . . . . 9 ((((invg𝐺)‘𝑎) ∈ (𝑍𝑈) ∧ ((invg𝐺)‘𝑏) ∈ 𝑈) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3834, 36, 37syl2anc 586 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) = (((invg𝐺)‘𝑏)(+g𝐺)((invg𝐺)‘𝑎)))
3930, 38eqtr4d 2859 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) = (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)))
4012, 8lsmelvali 18769 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (((invg𝐺)‘𝑎) ∈ 𝑇 ∧ ((invg𝐺)‘𝑏) ∈ 𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4115, 23, 33, 36, 40syl22anc 836 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (((invg𝐺)‘𝑎)(+g𝐺)((invg𝐺)‘𝑏)) ∈ (𝑇 𝑈))
4239, 41eqeltrd 2913 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈))
43 fveq2 6664 . . . . . . 7 (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝑎(+g𝐺)𝑏)))
4443eleq1d 2897 . . . . . 6 (𝑥 = (𝑎(+g𝐺)𝑏) → (((invg𝐺)‘𝑥) ∈ (𝑇 𝑈) ↔ ((invg𝐺)‘(𝑎(+g𝐺)𝑏)) ∈ (𝑇 𝑈)))
4542, 44syl5ibrcom 249 . . . . 5 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4645rexlimdvva 3294 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4714, 46sylbid 242 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) → ((invg𝐺)‘𝑥) ∈ (𝑇 𝑈)))
4847ralrimiv 3181 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))
491, 16syl 17 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Grp)
5028issubg3 18291 . . 3 (𝐺 ∈ Grp → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5149, 50syl 17 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubGrp‘𝐺) ↔ ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ (𝑇 𝑈)((invg𝐺)‘𝑥) ∈ (𝑇 𝑈))))
5211, 48, 51mpbir2and 711 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  SubMndcsubmnd 17949  Grpcgrp 18097  invgcminusg 18098  SubGrpcsubg 18267  Cntzccntz 18439  LSSumclsm 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-subg 18270  df-cntz 18441  df-lsm 18755
This theorem is referenced by:  pj1ghm  18823  lsmsubg2  18973  dprd2da  19158  dmdprdsplit2lem  19161  dprdsplit  19164
  Copyright terms: Public domain W3C validator