MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Visualization version   GIF version

Theorem lsmsubm 18781
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubm ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))

Proof of Theorem lsmsubm
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17970 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
213ad2ant1 1129 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Mnd)
3 eqid 2824 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43submss 17977 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1129 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (Base‘𝐺))
63submss 17977 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1130 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ⊆ (Base‘𝐺))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
93, 8lsmssv 18771 . . 3 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
102, 5, 7, 9syl3anc 1367 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
11 simp2 1133 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
123, 8lsmub1x 18774 . . . 4 ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
135, 11, 12syl2anc 586 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑇 𝑈))
14 eqid 2824 . . . . 5 (0g𝐺) = (0g𝐺)
1514subm0cl 17979 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑇)
16153ad2ant1 1129 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ 𝑇)
1713, 16sseldd 3971 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ (𝑇 𝑈))
18 eqid 2824 . . . . . . 7 (+g𝐺) = (+g𝐺)
193, 18, 8lsmelvalx 18768 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
202, 5, 7, 19syl3anc 1367 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
213, 18, 8lsmelvalx 18768 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
222, 5, 7, 21syl3anc 1367 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
2320, 22anbi12d 632 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑))))
24 reeanv 3370 . . . . 5 (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
25 reeanv 3370 . . . . . . 7 (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
262adantr 483 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝐺 ∈ Mnd)
275adantr 483 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (Base‘𝐺))
28 simprll 777 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎𝑇)
2927, 28sseldd 3971 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎 ∈ (Base‘𝐺))
30 simprlr 778 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏𝑇)
3127, 30sseldd 3971 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (Base‘𝐺))
327adantr 483 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ⊆ (Base‘𝐺))
33 simprrl 779 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐𝑈)
3432, 33sseldd 3971 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐 ∈ (Base‘𝐺))
35 simprrr 780 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑𝑈)
3632, 35sseldd 3971 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑 ∈ (Base‘𝐺))
37 simpl3 1189 . . . . . . . . . . . . . 14 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (𝑍𝑈))
3837, 30sseldd 3971 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (𝑍𝑈))
39 lsmsubg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
4018, 39cntzi 18462 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑍𝑈) ∧ 𝑐𝑈) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
4138, 33, 40syl2anc 586 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
423, 18, 26, 29, 31, 34, 36, 41mnd4g 17928 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
43 simpl1 1187 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ∈ (SubMnd‘𝐺))
4418submcl 17980 . . . . . . . . . . . . 13 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑎𝑇𝑏𝑇) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
4543, 28, 30, 44syl3anc 1367 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
46 simpl2 1188 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ∈ (SubMnd‘𝐺))
4718submcl 17980 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑐𝑈𝑑𝑈) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
4846, 33, 35, 47syl3anc 1367 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
493, 18, 8lsmelvalix 18769 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ ((𝑎(+g𝐺)𝑏) ∈ 𝑇 ∧ (𝑐(+g𝐺)𝑑) ∈ 𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5026, 27, 32, 45, 48, 49syl32anc 1374 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5142, 50eqeltrrd 2917 . . . . . . . . . 10 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
52 oveq12 7168 . . . . . . . . . . 11 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
5352eleq1d 2900 . . . . . . . . . 10 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → ((𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈) ↔ ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈)))
5451, 53syl5ibrcom 249 . . . . . . . . 9 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5554anassrs 470 . . . . . . . 8 ((((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) ∧ (𝑐𝑈𝑑𝑈)) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5655rexlimdvva 3297 . . . . . . 7 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5725, 56syl5bir 245 . . . . . 6 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → ((∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5857rexlimdvva 3297 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5924, 58syl5bir 245 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6023, 59sylbid 242 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6160ralrimivv 3193 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))
623, 14, 18issubm 17971 . . 3 (𝐺 ∈ Mnd → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
632, 62syl 17 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
6410, 17, 61, 63mpbir3and 1338 1 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939  cfv 6358  (class class class)co 7159  Basecbs 16486  +gcplusg 16568  0gc0g 16716  Mndcmnd 17914  SubMndcsubmnd 17958  Cntzccntz 18448  LSSumclsm 18762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-cntz 18450  df-lsm 18764
This theorem is referenced by:  lsmsubg  18782
  Copyright terms: Public domain W3C validator