MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmub2x Structured version   Visualization version   GIF version

Theorem lsmub2x 18766
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmub2x ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → 𝑈 ⊆ (𝑇 𝑈))

Proof of Theorem lsmub2x
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 submrcl 17961 . . . . . 6 (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
21ad2antrr 724 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝐺 ∈ Mnd)
3 simpr 487 . . . . . 6 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → 𝑈𝐵)
43sselda 3966 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑥𝐵)
5 lsmless2.v . . . . . 6 𝐵 = (Base‘𝐺)
6 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
7 eqid 2821 . . . . . 6 (0g𝐺) = (0g𝐺)
85, 6, 7mndlid 17925 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
92, 4, 8syl2anc 586 . . . 4 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
105submss 17968 . . . . . 6 (𝑇 ∈ (SubMnd‘𝐺) → 𝑇𝐵)
1110ad2antrr 724 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑇𝐵)
12 simplr 767 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑈𝐵)
137subm0cl 17970 . . . . . 6 (𝑇 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑇)
1413ad2antrr 724 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → (0g𝐺) ∈ 𝑇)
15 simpr 487 . . . . 5 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑥𝑈)
16 lsmless2.s . . . . . 6 = (LSSum‘𝐺)
175, 6, 16lsmelvalix 18760 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ ((0g𝐺) ∈ 𝑇𝑥𝑈)) → ((0g𝐺)(+g𝐺)𝑥) ∈ (𝑇 𝑈))
182, 11, 12, 14, 15, 17syl32anc 1374 . . . 4 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → ((0g𝐺)(+g𝐺)𝑥) ∈ (𝑇 𝑈))
199, 18eqeltrrd 2914 . . 3 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) ∧ 𝑥𝑈) → 𝑥 ∈ (𝑇 𝑈))
2019ex 415 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → (𝑥𝑈𝑥 ∈ (𝑇 𝑈)))
2120ssrdv 3972 1 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈𝐵) → 𝑈 ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Mndcmnd 17905  SubMndcsubmnd 17949  LSSumclsm 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-lsm 18755
This theorem is referenced by:  lsmub2  18777
  Copyright terms: Public domain W3C validator