MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsp0 Structured version   Visualization version   GIF version

Theorem lsp0 19057
Description: Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
lspsn0.z 0 = (0g𝑊)
lspsn0.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lsp0 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })

Proof of Theorem lsp0
StepHypRef Expression
1 lspsn0.z . . . 4 0 = (0g𝑊)
2 eqid 2651 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
31, 2lsssn0 18996 . . 3 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
4 0ss 4005 . . . 4 ∅ ⊆ { 0 }
5 lspsn0.n . . . . 5 𝑁 = (LSpan‘𝑊)
62, 5lspssp 19036 . . . 4 ((𝑊 ∈ LMod ∧ { 0 } ∈ (LSubSp‘𝑊) ∧ ∅ ⊆ { 0 }) → (𝑁‘∅) ⊆ { 0 })
74, 6mp3an3 1453 . . 3 ((𝑊 ∈ LMod ∧ { 0 } ∈ (LSubSp‘𝑊)) → (𝑁‘∅) ⊆ { 0 })
83, 7mpdan 703 . 2 (𝑊 ∈ LMod → (𝑁‘∅) ⊆ { 0 })
9 0ss 4005 . . . 4 ∅ ⊆ (Base‘𝑊)
10 eqid 2651 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
1110, 2, 5lspcl 19024 . . . 4 ((𝑊 ∈ LMod ∧ ∅ ⊆ (Base‘𝑊)) → (𝑁‘∅) ∈ (LSubSp‘𝑊))
129, 11mpan2 707 . . 3 (𝑊 ∈ LMod → (𝑁‘∅) ∈ (LSubSp‘𝑊))
131, 2lss0ss 18997 . . 3 ((𝑊 ∈ LMod ∧ (𝑁‘∅) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘∅))
1412, 13mpdan 703 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (𝑁‘∅))
158, 14eqssd 3653 1 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wss 3607  c0 3948  {csn 4210  cfv 5926  Basecbs 15904  0gc0g 16147  LModclmod 18911  LSubSpclss 18980  LSpanclspn 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lsp 19020
This theorem is referenced by:  lspuni0  19058  lss0v  19064  lspsnat  19193  lsppratlem3  19197  ocvz  20070
  Copyright terms: Public domain W3C validator