MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspindp2 Structured version   Visualization version   GIF version

Theorem lspindp2 19308
Description: Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
lspindp1.v 𝑉 = (Base‘𝑊)
lspindp1.o 0 = (0g𝑊)
lspindp1.n 𝑁 = (LSpan‘𝑊)
lspindp1.w (𝜑𝑊 ∈ LVec)
lspindp2.x (𝜑𝑋𝑉)
lspindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lspindp2.z (𝜑𝑍𝑉)
lspindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lspindp2.e (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspindp2 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})))

Proof of Theorem lspindp2
StepHypRef Expression
1 lspindp1.v . 2 𝑉 = (Base‘𝑊)
2 lspindp1.o . 2 0 = (0g𝑊)
3 lspindp1.n . 2 𝑁 = (LSpan‘𝑊)
4 lspindp1.w . 2 (𝜑𝑊 ∈ LVec)
5 lspindp2.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
6 lspindp2.x . 2 (𝜑𝑋𝑉)
7 lspindp2.z . 2 (𝜑𝑍𝑉)
8 lspindp2.q . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
98necomd 2975 . 2 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋}))
10 lspindp2.e . . 3 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))
11 prcom 4399 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
1211fveq2i 6343 . . . 4 (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 𝑋})
1312eleq2i 2819 . . 3 (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
1410, 13sylnib 317 . 2 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
151, 2, 3, 4, 5, 6, 7, 9, 14lspindp1 19306 1 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1620  wcel 2127  wne 2920  cdif 3700  {csn 4309  {cpr 4311  cfv 6037  Basecbs 16030  0gc0g 16273  LSpanclspn 19144  LVecclvec 19275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-grp 17597  df-minusg 17598  df-sbg 17599  df-subg 17763  df-cntz 17921  df-lsm 18222  df-cmn 18366  df-abl 18367  df-mgp 18661  df-ur 18673  df-ring 18720  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-drng 18922  df-lmod 19038  df-lss 19106  df-lsp 19145  df-lvec 19276
This theorem is referenced by:  mapdheq4lem  37491  mapdheq4  37492  mapdh6lem1N  37493  mapdh6lem2N  37494  mapdh6aN  37495  hdmap1l6lem1  37568  hdmap1l6lem2  37569  hdmap1l6a  37570
  Copyright terms: Public domain W3C validator