MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem1 Structured version   Visualization version   GIF version

Theorem lsppratlem1 19345
Description: Lemma for lspprat 19351. Let 𝑥 ∈ (𝑈 ∖ {0}) (if there is no such 𝑥 then 𝑈 is the zero subspace), and let 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) (assuming the conclusion is false). The goal is to write 𝑋, 𝑌 in terms of 𝑥, 𝑦, which would normally be done by solving the system of linear equations. The span equivalent of this process is lspsolv 19341 (hence the name), which we use extensively below. In this lemma, we show that since 𝑥 ∈ (𝑁‘{𝑋, 𝑌}), either 𝑥 ∈ (𝑁‘{𝑌}) or 𝑋 ∈ (𝑁‘{𝑥, 𝑌}). (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
Assertion
Ref Expression
lsppratlem1 (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})))

Proof of Theorem lsppratlem1
StepHypRef Expression
1 lspprat.w . . . . . 6 (𝜑𝑊 ∈ LVec)
21adantr 472 . . . . 5 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
3 lspprat.y . . . . . . 7 (𝜑𝑌𝑉)
43snssd 4481 . . . . . 6 (𝜑 → {𝑌} ⊆ 𝑉)
54adantr 472 . . . . 5 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → {𝑌} ⊆ 𝑉)
6 lspprat.x . . . . . 6 (𝜑𝑋𝑉)
76adantr 472 . . . . 5 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋𝑉)
8 lspprat.p . . . . . . . . . 10 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
98pssssd 3842 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
10 lsppratlem1.x2 . . . . . . . . . 10 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1110eldifad 3723 . . . . . . . . 9 (𝜑𝑥𝑈)
129, 11sseldd 3741 . . . . . . . 8 (𝜑𝑥 ∈ (𝑁‘{𝑋, 𝑌}))
13 prcom 4407 . . . . . . . . . 10 {𝑋, 𝑌} = {𝑌, 𝑋}
14 df-pr 4320 . . . . . . . . . 10 {𝑌, 𝑋} = ({𝑌} ∪ {𝑋})
1513, 14eqtri 2778 . . . . . . . . 9 {𝑋, 𝑌} = ({𝑌} ∪ {𝑋})
1615fveq2i 6351 . . . . . . . 8 (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑌} ∪ {𝑋}))
1712, 16syl6eleq 2845 . . . . . . 7 (𝜑𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})))
1817anim1i 593 . . . . . 6 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})) ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})))
19 eldif 3721 . . . . . 6 (𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})) ↔ (𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})) ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})))
2018, 19sylibr 224 . . . . 5 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})))
21 lspprat.v . . . . . 6 𝑉 = (Base‘𝑊)
22 lspprat.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
23 lspprat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
2421, 22, 23lspsolv 19341 . . . . 5 ((𝑊 ∈ LVec ∧ ({𝑌} ⊆ 𝑉𝑋𝑉𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})))) → 𝑋 ∈ (𝑁‘({𝑌} ∪ {𝑥})))
252, 5, 7, 20, 24syl13anc 1479 . . . 4 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘({𝑌} ∪ {𝑥})))
26 df-pr 4320 . . . . . 6 {𝑌, 𝑥} = ({𝑌} ∪ {𝑥})
27 prcom 4407 . . . . . 6 {𝑌, 𝑥} = {𝑥, 𝑌}
2826, 27eqtr3i 2780 . . . . 5 ({𝑌} ∪ {𝑥}) = {𝑥, 𝑌}
2928fveq2i 6351 . . . 4 (𝑁‘({𝑌} ∪ {𝑥})) = (𝑁‘{𝑥, 𝑌})
3025, 29syl6eleq 2845 . . 3 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
3130ex 449 . 2 (𝜑 → (¬ 𝑥 ∈ (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})))
3231orrd 392 1 (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1628  wcel 2135  cdif 3708  cun 3709  wss 3711  wpss 3712  {csn 4317  {cpr 4319  cfv 6045  Basecbs 16055  0gc0g 16298  LSubSpclss 19130  LSpanclspn 19169  LVecclvec 19300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-tpos 7517  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-0g 16300  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-grp 17622  df-minusg 17623  df-sbg 17624  df-cmn 18391  df-abl 18392  df-mgp 18686  df-ur 18698  df-ring 18745  df-oppr 18819  df-dvdsr 18837  df-unit 18838  df-invr 18868  df-drng 18947  df-lmod 19063  df-lss 19131  df-lsp 19170  df-lvec 19301
This theorem is referenced by:  lsppratlem5  19349
  Copyright terms: Public domain W3C validator