MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem6 Structured version   Visualization version   GIF version

Theorem lsppratlem6 19074
Description: Lemma for lspprat 19075. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem6.o 0 = (0g𝑊)
Assertion
Ref Expression
lsppratlem6 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))

Proof of Theorem lsppratlem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lspprat.p . . . . . . 7 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
21adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
3 lspprat.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
4 lspprat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
5 lspprat.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
6 lspprat.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
76adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑊 ∈ LVec)
8 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
98adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈𝑆)
10 lspprat.x . . . . . . . . . 10 (𝜑𝑋𝑉)
1110adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑋𝑉)
12 lspprat.y . . . . . . . . . 10 (𝜑𝑌𝑉)
1312adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑌𝑉)
141adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
15 lsppratlem6.o . . . . . . . . 9 0 = (0g𝑊)
16 simprl 793 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
17 simprr 795 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
183, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17lsppratlem5 19073 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
19 ssnpss 3690 . . . . . . . 8 ((𝑁‘{𝑋, 𝑌}) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2018, 19syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑈 ∖ { 0 }) ∧ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2120expr 642 . . . . . 6 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) → ¬ 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})))
222, 21mt2d 131 . . . . 5 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → ¬ 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
2322eq0rdv 3953 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
24 ssdif0 3918 . . . 4 (𝑈 ⊆ (𝑁‘{𝑥}) ↔ (𝑈 ∖ (𝑁‘{𝑥})) = ∅)
2523, 24sylibr 224 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 ⊆ (𝑁‘{𝑥}))
26 lveclmod 19028 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
276, 26syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
2827adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑊 ∈ LMod)
298adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈𝑆)
30 eldifi 3712 . . . . 5 (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑥𝑈)
3130adantl 482 . . . 4 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑥𝑈)
324, 5, 28, 29, 31lspsnel5a 18918 . . 3 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → (𝑁‘{𝑥}) ⊆ 𝑈)
3325, 32eqssd 3601 . 2 ((𝜑𝑥 ∈ (𝑈 ∖ { 0 })) → 𝑈 = (𝑁‘{𝑥}))
3433ex 450 1 (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  cdif 3553  wss 3556  wpss 3557  c0 3893  {csn 4150  {cpr 4152  cfv 5849  Basecbs 15784  0gc0g 16024  LModclmod 18787  LSubSpclss 18854  LSpanclspn 18893  LVecclvec 19024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-grp 17349  df-minusg 17350  df-sbg 17351  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-drng 18673  df-lmod 18789  df-lss 18855  df-lsp 18894  df-lvec 19025
This theorem is referenced by:  lspprat  19075
  Copyright terms: Public domain W3C validator