MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprcl Structured version   Visualization version   GIF version

Theorem lspprcl 19744
Description: The span of a pair is a subspace (frequently used special case of lspcl 19742). (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
lspprcl.w (𝜑𝑊 ∈ LMod)
lspprcl.x (𝜑𝑋𝑉)
lspprcl.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprcl (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)

Proof of Theorem lspprcl
StepHypRef Expression
1 lspprcl.w . 2 (𝜑𝑊 ∈ LMod)
2 lspprcl.x . . 3 (𝜑𝑋𝑉)
3 lspprcl.y . . 3 (𝜑𝑌𝑉)
42, 3prssd 4749 . 2 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
5 lspval.v . . 3 𝑉 = (Base‘𝑊)
6 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
7 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
85, 6, 7lspcl 19742 . 2 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)
91, 4, 8syl2anc 586 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wss 3936  {cpr 4563  cfv 6350  Basecbs 16477  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lsp 19738
This theorem is referenced by:  lspprid1  19763  lspprvacl  19765  lsmelpr  19857  lspexch  19895  lspindpi  19898  lsppratlem4  19916  lsatfixedN  36139  dvh3dim2  38578  dvh3dim3N  38579  lclkrlem2v  38658  lcfrlem23  38695  lcfrlem25  38697  mapdindp  38801  baerlem3lem1  38837  baerlem5alem1  38838  baerlem5blem1  38839  baerlem5amN  38846  baerlem5bmN  38847  baerlem5abmN  38848  mapdh6aN  38865  mapdh6b0N  38866  mapdh6iN  38874  lspindp5  38900  mapdh8ab  38907  mapdh8ad  38909  mapdh8e  38914  mapdh9a  38919  mapdh9aOLDN  38920  hdmap1l6a  38939  hdmap1l6b0N  38940  hdmap1l6i  38948  hdmap1eulemOLDN  38953  hdmapval0  38963  hdmapval3lemN  38967  hdmap10lem  38969  hdmap11lem1  38971  hdmap11lem2  38972  hdmap14lem11  39008
  Copyright terms: Public domain W3C validator