MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsncv0 Structured version   Visualization version   GIF version

Theorem lspsncv0 19194
Description: The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.)
Hypotheses
Ref Expression
lspsncv0.v 𝑉 = (Base‘𝑊)
lspsncv0.z 0 = (0g𝑊)
lspsncv0.s 𝑆 = (LSubSp‘𝑊)
lspsncv0.n 𝑁 = (LSpan‘𝑊)
lspsncv0.w (𝜑𝑊 ∈ LVec)
lspsncv0.x (𝜑𝑋𝑉)
lspsncv0.e (𝜑𝑋0 )
Assertion
Ref Expression
lspsncv0 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝑆(𝑦)   𝑁(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑦)   0 (𝑦)

Proof of Theorem lspsncv0
StepHypRef Expression
1 df-pss 3623 . . . . 5 ({ 0 } ⊊ 𝑦 ↔ ({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦))
2 simpr 476 . . . . . 6 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → { 0 } ≠ 𝑦)
3 nesym 2879 . . . . . 6 ({ 0 } ≠ 𝑦 ↔ ¬ 𝑦 = { 0 })
42, 3sylib 208 . . . . 5 (({ 0 } ⊆ 𝑦 ∧ { 0 } ≠ 𝑦) → ¬ 𝑦 = { 0 })
51, 4sylbi 207 . . . 4 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 = { 0 })
6 lspsncv0.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
76ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑊 ∈ LVec)
8 simplr 807 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦𝑆)
9 lspsncv0.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
109ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑋𝑉)
11 simpr 476 . . . . . . . . . 10 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → 𝑦 ⊆ (𝑁‘{𝑋}))
12 lspsncv0.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lspsncv0.z . . . . . . . . . . 11 0 = (0g𝑊)
14 lspsncv0.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
15 lspsncv0.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
1612, 13, 14, 15lspsnat 19193 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑦𝑆𝑋𝑉) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
177, 8, 10, 11, 16syl31anc 1369 . . . . . . . . 9 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = (𝑁‘{𝑋}) ∨ 𝑦 = { 0 }))
1817orcomd 402 . . . . . . . 8 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (𝑦 = { 0 } ∨ 𝑦 = (𝑁‘{𝑋})))
1918ord 391 . . . . . . 7 (((𝜑𝑦𝑆) ∧ 𝑦 ⊆ (𝑁‘{𝑋})) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋})))
2019ex 449 . . . . . 6 ((𝜑𝑦𝑆) → (𝑦 ⊆ (𝑁‘{𝑋}) → (¬ 𝑦 = { 0 } → 𝑦 = (𝑁‘{𝑋}))))
2120com23 86 . . . . 5 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋}))))
22 npss 3750 . . . . 5 𝑦 ⊊ (𝑁‘{𝑋}) ↔ (𝑦 ⊆ (𝑁‘{𝑋}) → 𝑦 = (𝑁‘{𝑋})))
2321, 22syl6ibr 242 . . . 4 ((𝜑𝑦𝑆) → (¬ 𝑦 = { 0 } → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
245, 23syl5 34 . . 3 ((𝜑𝑦𝑆) → ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
2524ralrimiva 2995 . 2 (𝜑 → ∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})))
26 ralinexa 3026 . 2 (∀𝑦𝑆 ({ 0 } ⊊ 𝑦 → ¬ 𝑦 ⊊ (𝑁‘{𝑋})) ↔ ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
2725, 26sylib 208 1 (𝜑 → ¬ ∃𝑦𝑆 ({ 0 } ⊊ 𝑦𝑦 ⊊ (𝑁‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  wpss 3608  {csn 4210  cfv 5926  Basecbs 15904  0gc0g 16147  LSubSpclss 18980  LSpanclspn 19019  LVecclvec 19150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151
This theorem is referenced by:  lsatcv0  34636
  Copyright terms: Public domain W3C validator