MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneleq Structured version   Visualization version   GIF version

Theorem lspsneleq 19034
Description: Membership relation that implies equality of spans. (spansneleq 28278 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsneleq.v 𝑉 = (Base‘𝑊)
lspsneleq.o 0 = (0g𝑊)
lspsneleq.n 𝑁 = (LSpan‘𝑊)
lspsneleq.w (𝜑𝑊 ∈ LVec)
lspsneleq.x (𝜑𝑋𝑉)
lspsneleq.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
lspsneleq.z (𝜑𝑌0 )
Assertion
Ref Expression
lspsneleq (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))

Proof of Theorem lspsneleq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lspsneleq.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
2 lspsneleq.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 19025 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 lspsneleq.x . . . 4 (𝜑𝑋𝑉)
6 eqid 2621 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2621 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lspsneleq.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2621 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 lspsneleq.n . . . . 5 𝑁 = (LSpan‘𝑊)
116, 7, 8, 9, 10lspsnel 18922 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
124, 5, 11syl2anc 692 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
13 simpr 477 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
1413sneqd 4160 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → {𝑌} = {(𝑘( ·𝑠𝑊)𝑋)})
1514fveq2d 6152 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}))
162ad2antrr 761 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑊 ∈ LVec)
17 simplr 791 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
18 lspsneleq.z . . . . . . . . 9 (𝜑𝑌0 )
1918ad2antrr 761 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌0 )
20 simplr 791 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
21 simpr 477 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2221oveq1d 6619 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
23 eqid 2621 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
24 lspsneleq.o . . . . . . . . . . . . . 14 0 = (0g𝑊)
258, 6, 9, 23, 24lmod0vs 18817 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
264, 5, 25syl2anc 692 . . . . . . . . . . . 12 (𝜑 → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2726ad3antrrr 765 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2820, 22, 273eqtrd 2659 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = 0 )
2928ex 450 . . . . . . . . 9 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑌 = 0 ))
3029necon3d 2811 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑌0𝑘 ≠ (0g‘(Scalar‘𝑊))))
3119, 30mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
325ad2antrr 761 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑋𝑉)
338, 6, 9, 7, 23, 10lspsnvs 19033 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋𝑉) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3416, 17, 31, 32, 33syl121anc 1328 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3515, 34eqtrd 2655 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3635ex 450 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3736rexlimdva 3024 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3812, 37sylbid 230 . 2 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
391, 38mpd 15 1 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  {csn 4148  cfv 5847  (class class class)co 6604  Basecbs 15781  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  LModclmod 18784  LSpanclspn 18890  LVecclvec 19021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022
This theorem is referenced by:  lspsncmp  19035  lspsnel4  19043  lspdisj2  19046  lspexch  19048  lsmcv  19060  mapdpglem10  36450  mapdpglem15  36455
  Copyright terms: Public domain W3C validator