MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq Structured version   Visualization version   GIF version

Theorem lspsneq 19295
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 19178 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq.v 𝑉 = (Base‘𝑊)
lspsneq.s 𝑆 = (Scalar‘𝑊)
lspsneq.k 𝐾 = (Base‘𝑆)
lspsneq.o 0 = (0g𝑆)
lspsneq.t · = ( ·𝑠𝑊)
lspsneq.n 𝑁 = (LSpan‘𝑊)
lspsneq.w (𝜑𝑊 ∈ LVec)
lspsneq.x (𝜑𝑋𝑉)
lspsneq.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsneq (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   0 ,𝑘   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem lspsneq
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lspsneq.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 19279 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspsneq.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑊)
54lmodring 19044 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
6 lspsneq.k . . . . . . . . . 10 𝐾 = (Base‘𝑆)
7 eqid 2748 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
86, 7ringidcl 18739 . . . . . . . . 9 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝐾)
93, 5, 83syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ∈ 𝐾)
104lvecdrng 19278 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
11 lspsneq.o . . . . . . . . . 10 0 = (0g𝑆)
1211, 7drngunz 18935 . . . . . . . . 9 (𝑆 ∈ DivRing → (1r𝑆) ≠ 0 )
131, 10, 123syl 18 . . . . . . . 8 (𝜑 → (1r𝑆) ≠ 0 )
14 eldifsn 4450 . . . . . . . 8 ((1r𝑆) ∈ (𝐾 ∖ { 0 }) ↔ ((1r𝑆) ∈ 𝐾 ∧ (1r𝑆) ≠ 0 ))
159, 13, 14sylanbrc 701 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
1615ad2antrr 764 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → (1r𝑆) ∈ (𝐾 ∖ { 0 }))
17 lspsneq.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
18 eqid 2748 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
1917, 18lmod0vcl 19065 . . . . . . . . . 10 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
201, 2, 193syl 18 . . . . . . . . 9 (𝜑 → (0g𝑊) ∈ 𝑉)
21 lspsneq.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2217, 4, 21, 7lmodvs1 19064 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (0g𝑊) ∈ 𝑉) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
233, 20, 22syl2anc 696 . . . . . . . 8 (𝜑 → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
2423ad2antrr 764 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · (0g𝑊)) = (0g𝑊))
25 oveq2 6809 . . . . . . . 8 (𝑌 = (0g𝑊) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
2625adantl 473 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ((1r𝑆) · 𝑌) = ((1r𝑆) · (0g𝑊)))
27 lspsneq.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
283adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LMod)
29 lspsneq.x . . . . . . . . . 10 (𝜑𝑋𝑉)
3029adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋𝑉)
31 lspsneq.y . . . . . . . . . 10 (𝜑𝑌𝑉)
3231adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑌𝑉)
33 simpr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3417, 18, 27, 28, 30, 32, 33lspsneq0b 19186 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) ↔ 𝑌 = (0g𝑊)))
3534biimpar 503 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = (0g𝑊))
3624, 26, 353eqtr4rd 2793 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → 𝑋 = ((1r𝑆) · 𝑌))
37 oveq1 6808 . . . . . . . 8 (𝑗 = (1r𝑆) → (𝑗 · 𝑌) = ((1r𝑆) · 𝑌))
3837eqeq2d 2758 . . . . . . 7 (𝑗 = (1r𝑆) → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = ((1r𝑆) · 𝑌)))
3938rspcev 3437 . . . . . 6 (((1r𝑆) ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = ((1r𝑆) · 𝑌)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
4016, 36, 39syl2anc 696 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 = (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
41 eqimss 3786 . . . . . . . . . 10 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
4241adantl 473 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
43 eqid 2748 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
4417, 43, 27lspsncl 19150 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
453, 31, 44syl2anc 696 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4645adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
4717, 43, 27, 28, 46, 30lspsnel5 19168 . . . . . . . . 9 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
4842, 47mpbird 247 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
494, 6, 17, 21, 27lspsnel 19176 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
5028, 32, 49syl2anc 696 . . . . . . . 8 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌)))
5148, 50mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
5251adantr 472 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗𝐾 𝑋 = (𝑗 · 𝑌))
53 simprl 811 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗𝐾)
54 simpr 479 . . . . . . . . . . . . . 14 ((𝑗𝐾𝑋 = (𝑗 · 𝑌)) → 𝑋 = (𝑗 · 𝑌))
5554adantl 473 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 = (𝑗 · 𝑌))
5634biimpd 219 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑋 = (0g𝑊) → 𝑌 = (0g𝑊)))
5756necon3d 2941 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → (𝑌 ≠ (0g𝑊) → 𝑋 ≠ (0g𝑊)))
5857imp 444 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → 𝑋 ≠ (0g𝑊))
5958adantr 472 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑋 ≠ (0g𝑊))
6055, 59eqnetrrd 2988 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗 · 𝑌) ≠ (0g𝑊))
611adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
6261ad2antrr 764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑊 ∈ LVec)
6332ad2antrr 764 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑌𝑉)
6417, 21, 4, 6, 11, 18, 62, 53, 63lvecvsn0 19282 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → ((𝑗 · 𝑌) ≠ (0g𝑊) ↔ (𝑗0𝑌 ≠ (0g𝑊))))
6560, 64mpbid 222 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗0𝑌 ≠ (0g𝑊)))
6665simpld 477 . . . . . . . . . 10 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗0 )
67 eldifsn 4450 . . . . . . . . . 10 (𝑗 ∈ (𝐾 ∖ { 0 }) ↔ (𝑗𝐾𝑗0 ))
6853, 66, 67sylanbrc 701 . . . . . . . . 9 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ { 0 }))
6968, 55jca 555 . . . . . . . 8 ((((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) ∧ (𝑗𝐾𝑋 = (𝑗 · 𝑌))) → (𝑗 ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = (𝑗 · 𝑌)))
7069ex 449 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ((𝑗𝐾𝑋 = (𝑗 · 𝑌)) → (𝑗 ∈ (𝐾 ∖ { 0 }) ∧ 𝑋 = (𝑗 · 𝑌))))
7170reximdv2 3140 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → (∃𝑗𝐾 𝑋 = (𝑗 · 𝑌) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
7252, 71mpd 15 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ 𝑌 ≠ (0g𝑊)) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
7340, 72pm2.61dane 3007 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌))
7473ex 449 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
751adantr 472 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑊 ∈ LVec)
76 eldifi 3863 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗𝐾)
7776adantl 473 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗𝐾)
78 eldifsni 4454 . . . . . . . 8 (𝑗 ∈ (𝐾 ∖ { 0 }) → 𝑗0 )
7978adantl 473 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑗0 )
8031adantr 472 . . . . . . 7 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → 𝑌𝑉)
8117, 4, 21, 6, 11, 27lspsnvs 19287 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑗𝐾𝑗0 ) ∧ 𝑌𝑉) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
8275, 77, 79, 80, 81syl121anc 1468 . . . . . 6 ((𝜑𝑗 ∈ (𝐾 ∖ { 0 })) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}))
8382ex 449 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
84 sneq 4319 . . . . . . . 8 (𝑋 = (𝑗 · 𝑌) → {𝑋} = {(𝑗 · 𝑌)})
8584fveq2d 6344 . . . . . . 7 (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{(𝑗 · 𝑌)}))
8685eqeq1d 2750 . . . . . 6 (𝑋 = (𝑗 · 𝑌) → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌})))
8786biimprcd 240 . . . . 5 ((𝑁‘{(𝑗 · 𝑌)}) = (𝑁‘{𝑌}) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
8883, 87syl6 35 . . . 4 (𝜑 → (𝑗 ∈ (𝐾 ∖ { 0 }) → (𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))))
8988rexlimdv 3156 . . 3 (𝜑 → (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
9074, 89impbid 202 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌)))
91 oveq1 6808 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
9291eqeq2d 2758 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
9392cbvrexv 3299 . 2 (∃𝑗 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑗 · 𝑌) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))
9490, 93syl6bb 276 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wrex 3039  cdif 3700  wss 3703  {csn 4309  cfv 6037  (class class class)co 6801  Basecbs 16030  Scalarcsca 16117   ·𝑠 cvsca 16118  0gc0g 16273  1rcur 18672  Ringcrg 18718  DivRingcdr 18920  LModclmod 19036  LSubSpclss 19105  LSpanclspn 19144  LVecclvec 19275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-mgp 18661  df-ur 18673  df-ring 18720  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-drng 18922  df-lmod 19038  df-lss 19106  df-lsp 19145  df-lvec 19276
This theorem is referenced by:  lspsneu  19296  mapdpglem26  37458  mapdpglem27  37459  hdmap14lem2a  37630  hdmap14lem2N  37632
  Copyright terms: Public domain W3C validator