MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq0 Structured version   Visualization version   GIF version

Theorem lspsneq0 19776
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsneq0.v 𝑉 = (Base‘𝑊)
lspsneq0.z 0 = (0g𝑊)
lspsneq0.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsneq0 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))

Proof of Theorem lspsneq0
StepHypRef Expression
1 lspsneq0.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspsneq0.n . . . . 5 𝑁 = (LSpan‘𝑊)
31, 2lspsnid 19757 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
4 eleq2 2899 . . . 4 ((𝑁‘{𝑋}) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) ↔ 𝑋 ∈ { 0 }))
53, 4syl5ibcom 247 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 ∈ { 0 }))
6 elsni 4576 . . 3 (𝑋 ∈ { 0 } → 𝑋 = 0 )
75, 6syl6 35 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 = 0 ))
8 lspsneq0.z . . . . 5 0 = (0g𝑊)
98, 2lspsn0 19772 . . . 4 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
109adantr 483 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{ 0 }) = { 0 })
11 sneq 4569 . . . 4 (𝑋 = 0 → {𝑋} = { 0 })
1211fveqeq2d 6671 . . 3 (𝑋 = 0 → ((𝑁‘{𝑋}) = { 0 } ↔ (𝑁‘{ 0 }) = { 0 }))
1310, 12syl5ibrcom 249 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 }))
147, 13impbid 214 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {csn 4559  cfv 6348  Basecbs 16475  0gc0g 16705  LModclmod 19626  LSpanclspn 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19232  df-ring 19291  df-lmod 19628  df-lss 19696  df-lsp 19736
This theorem is referenced by:  lspsneq0b  19777  lsatn0  36127  lsator0sp  36129  lsat0cv  36161  dih0vbN  38410  dihlspsnat  38461  mapdn0  38797  mapdindp1  38848  hdmapeq0  38972
  Copyright terms: Public domain W3C validator