![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsntrim | Structured version Visualization version GIF version |
Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lspsntrim.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsntrim.s | ⊢ − = (-g‘𝑊) |
lspsntrim.p | ⊢ ⊕ = (LSSum‘𝑊) |
lspsntrim.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsntrim | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsntrim.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2758 | . . . . 5 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
3 | 1, 2 | lmodvnegcl 19104 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘𝑌) ∈ 𝑉) |
4 | 3 | 3adant2 1126 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘𝑌) ∈ 𝑉) |
5 | eqid 2758 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
6 | lspsntrim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | lspsntrim.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
8 | 1, 5, 6, 7 | lspsntri 19297 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝑊)‘𝑌) ∈ 𝑉) → (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
9 | 4, 8 | syld3an3 1516 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
10 | lspsntrim.s | . . . . . 6 ⊢ − = (-g‘𝑊) | |
11 | 1, 5, 2, 10 | grpsubval 17664 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))) |
12 | 11 | sneqd 4331 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(𝑋 − 𝑌)} = {(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) |
13 | 12 | fveq2d 6354 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))})) |
14 | 13 | 3adant1 1125 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))})) |
15 | 1, 2, 6 | lspsnneg 19206 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑌)}) = (𝑁‘{𝑌})) |
16 | 15 | 3adant2 1126 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑌)}) = (𝑁‘{𝑌})) |
17 | 16 | eqcomd 2764 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) = (𝑁‘{((invg‘𝑊)‘𝑌)})) |
18 | 17 | oveq2d 6827 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
19 | 9, 14, 18 | 3sstr4d 3787 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 ⊆ wss 3713 {csn 4319 ‘cfv 6047 (class class class)co 6811 Basecbs 16057 +gcplusg 16141 invgcminusg 17622 -gcsg 17623 LSSumclsm 18247 LModclmod 19063 LSpanclspn 19171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-0g 16302 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-submnd 17535 df-grp 17624 df-minusg 17625 df-sbg 17626 df-subg 17790 df-cntz 17948 df-lsm 18249 df-cmn 18393 df-abl 18394 df-mgp 18688 df-ur 18700 df-ring 18747 df-lmod 19065 df-lss 19133 df-lsp 19172 |
This theorem is referenced by: mapdpglem1 37461 baerlem3lem2 37499 baerlem5alem2 37500 baerlem5blem2 37501 |
Copyright terms: Public domain | W3C validator |