MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolv Structured version   Visualization version   GIF version

Theorem lspsolv 19137
Description: If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsolv ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))

Proof of Theorem lspsolv
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.v . . 3 𝑉 = (Base‘𝑊)
2 lspsolv.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspsolv.n . . 3 𝑁 = (LSpan‘𝑊)
4 eqid 2621 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2621 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2621 . . 3 (+g𝑊) = (+g𝑊)
7 eqid 2621 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2621 . . 3 {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)} = {𝑧𝑉 ∣ ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑧(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)}
9 lveclmod 19100 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
109adantr 481 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑊 ∈ LMod)
11 simpr1 1066 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝐴𝑉)
12 simpr2 1067 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌𝑉)
13 simpr3 1068 . . . 4 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
1413eldifad 3584 . . 3 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
151, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14lspsolvlem 19136 . 2 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → ∃𝑟 ∈ (Base‘(Scalar‘𝑊))(𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
164lvecdrng 19099 . . . . . . 7 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
1716ad2antrr 762 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (Scalar‘𝑊) ∈ DivRing)
18 simprl 794 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ∈ (Base‘(Scalar‘𝑊)))
1910adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
2012adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
21 eqid 2621 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
22 eqid 2621 . . . . . . . . . . . . 13 (0g𝑊) = (0g𝑊)
231, 4, 7, 21, 22lmod0vs 18890 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2419, 20, 23syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = (0g𝑊))
2524oveq2d 6663 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)(0g𝑊)))
2611adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴𝑉)
2720snssd 4338 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑌} ⊆ 𝑉)
2826, 27unssd 3787 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑌}) ⊆ 𝑉)
291, 3lspssv 18977 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3019, 28, 29syl2anc 693 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑉)
3130ssdifssd 3746 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)) ⊆ 𝑉)
3213adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3331, 32sseldd 3602 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋𝑉)
341, 6, 22lmod0vrid 18888 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3519, 33, 34syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(0g𝑊)) = 𝑋)
3625, 35eqtrd 2655 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) = 𝑋)
3736, 32eqeltrd 2700 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))
3837eldifbd 3585 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
39 simprr 796 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))
40 oveq1 6654 . . . . . . . . . . 11 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑟( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
4140oveq2d 6663 . . . . . . . . . 10 (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) = (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)))
4241eleq1d 2685 . . . . . . . . 9 (𝑟 = (0g‘(Scalar‘𝑊)) → ((𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) ↔ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4339, 42syl5ibcom 235 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟 = (0g‘(Scalar‘𝑊)) → (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴)))
4443necon3bd 2807 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (¬ (𝑋(+g𝑊)((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴) → 𝑟 ≠ (0g‘(Scalar‘𝑊))))
4538, 44mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑟 ≠ (0g‘(Scalar‘𝑊)))
46 eqid 2621 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
47 eqid 2621 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
48 eqid 2621 . . . . . . 7 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
495, 21, 46, 47, 48drnginvrl 18760 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5017, 18, 45, 49syl3anc 1325 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟) = (1r‘(Scalar‘𝑊)))
5150oveq1d 6662 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
525, 21, 48drnginvrcl 18758 . . . . . 6 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
5317, 18, 45, 52syl3anc 1325 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)))
541, 4, 7, 5, 46lmodvsass 18882 . . . . 5 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
5519, 53, 18, 20, 54syl13anc 1327 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((((invr‘(Scalar‘𝑊))‘𝑟)(.r‘(Scalar‘𝑊))𝑟)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)))
561, 4, 7, 47lmodvs1 18885 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5719, 20, 56syl2anc 693 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
5851, 55, 573eqtr3d 2663 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) = 𝑌)
5933snssd 4338 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → {𝑋} ⊆ 𝑉)
6026, 59unssd 3787 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ 𝑉)
611, 2, 3lspcl 18970 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
6219, 60, 61syl2anc 693 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆)
631, 4, 7, 5lmodvscl 18874 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
6419, 18, 20, 63syl3anc 1325 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉)
65 eqid 2621 . . . . . . 7 (-g𝑊) = (-g𝑊)
661, 6, 65lmodvpncan 18910 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
6719, 64, 33, 66syl3anc 1325 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) = (𝑟( ·𝑠𝑊)𝑌))
681, 6lmodcom 18903 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ 𝑉𝑋𝑉) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
6919, 64, 33, 68syl3anc 1325 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) = (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)))
70 ssun1 3774 . . . . . . . . . 10 𝐴 ⊆ (𝐴 ∪ {𝑋})
7170a1i 11 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝐴 ⊆ (𝐴 ∪ {𝑋}))
721, 3lspss 18978 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉𝐴 ⊆ (𝐴 ∪ {𝑋})) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7319, 60, 71, 72syl3anc 1325 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7473, 39sseldd 3602 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
7569, 74eqeltrd 2700 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → ((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
761, 3lspssid 18979 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐴 ∪ {𝑋}) ⊆ 𝑉) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
7719, 60, 76syl2anc 693 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝐴 ∪ {𝑋}) ⊆ (𝑁‘(𝐴 ∪ {𝑋})))
78 snidg 4204 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
79 elun2 3779 . . . . . . . 8 (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8033, 78, 793syl 18 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝐴 ∪ {𝑋}))
8177, 80sseldd 3602 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8265, 2lssvsubcl 18938 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})) ∧ 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8319, 62, 75, 81, 82syl22anc 1326 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((𝑟( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)(-g𝑊)𝑋) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8467, 83eqeltrrd 2701 . . . 4 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
854, 7, 5, 2lssvscl 18949 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁‘(𝐴 ∪ {𝑋})) ∈ 𝑆) ∧ (((invr‘(Scalar‘𝑊))‘𝑟) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑟( ·𝑠𝑊)𝑌) ∈ (𝑁‘(𝐴 ∪ {𝑋})))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8619, 62, 53, 84, 85syl22anc 1326 . . 3 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → (((invr‘(Scalar‘𝑊))‘𝑟)( ·𝑠𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8758, 86eqeltrrd 2701 . 2 (((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) ∧ (𝑟 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑋(+g𝑊)(𝑟( ·𝑠𝑊)𝑌)) ∈ (𝑁𝐴))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
8815, 87rexlimddv 3033 1 ((𝑊 ∈ LVec ∧ (𝐴𝑉𝑌𝑉𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989  wne 2793  wrex 2912  {crab 2915  cdif 3569  cun 3570  wss 3572  {csn 4175  cfv 5886  (class class class)co 6647  Basecbs 15851  +gcplusg 15935  .rcmulr 15936  Scalarcsca 15938   ·𝑠 cvsca 15939  0gc0g 16094  -gcsg 17418  1rcur 18495  invrcinvr 18665  DivRingcdr 18741  LModclmod 18857  LSubSpclss 18926  LSpanclspn 18965  LVecclvec 19096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-sbg 17421  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-oppr 18617  df-dvdsr 18635  df-unit 18636  df-invr 18666  df-drng 18743  df-lmod 18859  df-lss 18927  df-lsp 18966  df-lvec 19097
This theorem is referenced by:  lssacsex  19138  lspsnat  19139  lsppratlem1  19141  lsppratlem3  19143  lsppratlem4  19144  lbsextlem4  19155  lindsenlbs  33384
  Copyright terms: Public domain W3C validator