MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolvlem Structured version   Visualization version   GIF version

Theorem lspsolvlem 19916
Description: Lemma for lspsolv 19917. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
lspsolv.f 𝐹 = (Scalar‘𝑊)
lspsolv.b 𝐵 = (Base‘𝐹)
lspsolv.p + = (+g𝑊)
lspsolv.t · = ( ·𝑠𝑊)
lspsolv.q 𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}
lspsolv.w (𝜑𝑊 ∈ LMod)
lspsolv.ss (𝜑𝐴𝑉)
lspsolv.y (𝜑𝑌𝑉)
lspsolv.x (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
Assertion
Ref Expression
lspsolvlem (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐵,𝑟,𝑧   𝑁,𝑟,𝑧   𝜑,𝑧   𝐹,𝑟   𝑆,𝑟   𝑉,𝑟,𝑧   𝑊,𝑟,𝑧   + ,𝑟,𝑧   · ,𝑟,𝑧   𝑋,𝑟,𝑧   𝑌,𝑟,𝑧
Allowed substitution hints:   𝜑(𝑟)   𝑄(𝑧,𝑟)   𝑆(𝑧)   𝐹(𝑧)

Proof of Theorem lspsolvlem
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.w . . . . 5 (𝜑𝑊 ∈ LMod)
2 lspsolv.q . . . . . . 7 𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}
32ssrab3 4059 . . . . . 6 𝑄𝑉
43a1i 11 . . . . 5 (𝜑𝑄𝑉)
5 lspsolv.ss . . . . . . . 8 (𝜑𝐴𝑉)
61adantr 483 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑊 ∈ LMod)
7 lspsolv.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
8 lspsolv.b . . . . . . . . . . 11 𝐵 = (Base‘𝐹)
9 eqid 2823 . . . . . . . . . . 11 (0g𝐹) = (0g𝐹)
107, 8, 9lmod0cl 19662 . . . . . . . . . 10 (𝑊 ∈ LMod → (0g𝐹) ∈ 𝐵)
116, 10syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → (0g𝐹) ∈ 𝐵)
12 lspsolv.y . . . . . . . . . . . . . 14 (𝜑𝑌𝑉)
13 lspsolv.v . . . . . . . . . . . . . . 15 𝑉 = (Base‘𝑊)
14 lspsolv.t . . . . . . . . . . . . . . 15 · = ( ·𝑠𝑊)
15 eqid 2823 . . . . . . . . . . . . . . 15 (0g𝑊) = (0g𝑊)
1613, 7, 14, 9, 15lmod0vs 19669 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g𝐹) · 𝑌) = (0g𝑊))
171, 12, 16syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((0g𝐹) · 𝑌) = (0g𝑊))
1817adantr 483 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ((0g𝐹) · 𝑌) = (0g𝑊))
1918oveq2d 7174 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) = (𝑧 + (0g𝑊)))
205sselda 3969 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧𝑉)
21 lspsolv.p . . . . . . . . . . . . 13 + = (+g𝑊)
2213, 21, 15lmod0vrid 19667 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → (𝑧 + (0g𝑊)) = 𝑧)
236, 20, 22syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝑧 + (0g𝑊)) = 𝑧)
2419, 23eqtrd 2858 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) = 𝑧)
25 lspsolv.n . . . . . . . . . . . . 13 𝑁 = (LSpan‘𝑊)
2613, 25lspssid 19759 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → 𝐴 ⊆ (𝑁𝐴))
271, 5, 26syl2anc 586 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (𝑁𝐴))
2827sselda 3969 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝑁𝐴))
2924, 28eqeltrd 2915 . . . . . . . . 9 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴))
30 oveq1 7165 . . . . . . . . . . . 12 (𝑟 = (0g𝐹) → (𝑟 · 𝑌) = ((0g𝐹) · 𝑌))
3130oveq2d 7174 . . . . . . . . . . 11 (𝑟 = (0g𝐹) → (𝑧 + (𝑟 · 𝑌)) = (𝑧 + ((0g𝐹) · 𝑌)))
3231eleq1d 2899 . . . . . . . . . 10 (𝑟 = (0g𝐹) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴)))
3332rspcev 3625 . . . . . . . . 9 (((0g𝐹) ∈ 𝐵 ∧ (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
3411, 29, 33syl2anc 586 . . . . . . . 8 ((𝜑𝑧𝐴) → ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
355, 34ssrabdv 4052 . . . . . . 7 (𝜑𝐴 ⊆ {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)})
3635, 2sseqtrrdi 4020 . . . . . 6 (𝜑𝐴𝑄)
377lmodfgrp 19645 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
381, 37syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Grp)
39 eqid 2823 . . . . . . . . . . . 12 (1r𝐹) = (1r𝐹)
407, 8, 39lmod1cl 19663 . . . . . . . . . . 11 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐵)
411, 40syl 17 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ 𝐵)
42 eqid 2823 . . . . . . . . . . 11 (invg𝐹) = (invg𝐹)
438, 42grpinvcl 18153 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐵) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐵)
4438, 41, 43syl2anc 586 . . . . . . . . 9 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐵)
45 eqid 2823 . . . . . . . . . . . . . 14 (invg𝑊) = (invg𝑊)
4613, 45, 7, 14, 39, 42lmodvneg1 19679 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) = ((invg𝑊)‘𝑌))
471, 12, 46syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) = ((invg𝑊)‘𝑌))
4847oveq2d 7174 . . . . . . . . . . 11 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (𝑌 + ((invg𝑊)‘𝑌)))
49 lmodgrp 19643 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5113, 21, 15, 45grprinv 18155 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑌 + ((invg𝑊)‘𝑌)) = (0g𝑊))
5250, 12, 51syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((invg𝑊)‘𝑌)) = (0g𝑊))
5348, 52eqtrd 2858 . . . . . . . . . 10 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (0g𝑊))
54 lspsolv.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑊)
5513, 54, 25lspcl 19750 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝑁𝐴) ∈ 𝑆)
561, 5, 55syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ∈ 𝑆)
5715, 54lss0cl 19720 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝐴) ∈ 𝑆) → (0g𝑊) ∈ (𝑁𝐴))
581, 56, 57syl2anc 586 . . . . . . . . . 10 (𝜑 → (0g𝑊) ∈ (𝑁𝐴))
5953, 58eqeltrd 2915 . . . . . . . . 9 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴))
60 oveq1 7165 . . . . . . . . . . . 12 (𝑟 = ((invg𝐹)‘(1r𝐹)) → (𝑟 · 𝑌) = (((invg𝐹)‘(1r𝐹)) · 𝑌))
6160oveq2d 7174 . . . . . . . . . . 11 (𝑟 = ((invg𝐹)‘(1r𝐹)) → (𝑌 + (𝑟 · 𝑌)) = (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)))
6261eleq1d 2899 . . . . . . . . . 10 (𝑟 = ((invg𝐹)‘(1r𝐹)) → ((𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴)))
6362rspcev 3625 . . . . . . . . 9 ((((invg𝐹)‘(1r𝐹)) ∈ 𝐵 ∧ (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
6444, 59, 63syl2anc 586 . . . . . . . 8 (𝜑 → ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
65 oveq1 7165 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧 + (𝑟 · 𝑌)) = (𝑌 + (𝑟 · 𝑌)))
6665eleq1d 2899 . . . . . . . . . 10 (𝑧 = 𝑌 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6766rexbidv 3299 . . . . . . . . 9 (𝑧 = 𝑌 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6867, 2elrab2 3685 . . . . . . . 8 (𝑌𝑄 ↔ (𝑌𝑉 ∧ ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6912, 64, 68sylanbrc 585 . . . . . . 7 (𝜑𝑌𝑄)
7069snssd 4744 . . . . . 6 (𝜑 → {𝑌} ⊆ 𝑄)
7136, 70unssd 4164 . . . . 5 (𝜑 → (𝐴 ∪ {𝑌}) ⊆ 𝑄)
7213, 25lspss 19758 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑄𝑉 ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑄) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁𝑄))
731, 4, 71, 72syl3anc 1367 . . . 4 (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁𝑄))
747a1i 11 . . . . . 6 (𝜑𝐹 = (Scalar‘𝑊))
758a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝐹))
7613a1i 11 . . . . . 6 (𝜑𝑉 = (Base‘𝑊))
7721a1i 11 . . . . . 6 (𝜑+ = (+g𝑊))
7814a1i 11 . . . . . 6 (𝜑· = ( ·𝑠𝑊))
7954a1i 11 . . . . . 6 (𝜑𝑆 = (LSubSp‘𝑊))
8069ne0d 4303 . . . . . 6 (𝜑𝑄 ≠ ∅)
81 oveq1 7165 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑧 + (𝑟 · 𝑌)) = (𝑥 + (𝑟 · 𝑌)))
8281eleq1d 2899 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
8382rexbidv 3299 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
84 oveq1 7165 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (𝑟 · 𝑌) = (𝑠 · 𝑌))
8584oveq2d 7174 . . . . . . . . . . . . . . 15 (𝑟 = 𝑠 → (𝑥 + (𝑟 · 𝑌)) = (𝑥 + (𝑠 · 𝑌)))
8685eleq1d 2899 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → ((𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
8786cbvrexvw 3452 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴))
8883, 87syl6bb 289 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
8988, 2elrab2 3685 . . . . . . . . . . 11 (𝑥𝑄 ↔ (𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
90 oveq1 7165 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧 + (𝑟 · 𝑌)) = (𝑦 + (𝑟 · 𝑌)))
9190eleq1d 2899 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
9291rexbidv 3299 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
93 oveq1 7165 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → (𝑟 · 𝑌) = (𝑡 · 𝑌))
9493oveq2d 7174 . . . . . . . . . . . . . . 15 (𝑟 = 𝑡 → (𝑦 + (𝑟 · 𝑌)) = (𝑦 + (𝑡 · 𝑌)))
9594eleq1d 2899 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → ((𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9695cbvrexvw 3452 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))
9792, 96syl6bb 289 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9897, 2elrab2 3685 . . . . . . . . . . 11 (𝑦𝑄 ↔ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9989, 98anbi12i 628 . . . . . . . . . 10 ((𝑥𝑄𝑦𝑄) ↔ ((𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)) ∧ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
100 an4 654 . . . . . . . . . 10 (((𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)) ∧ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) ↔ ((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
10199, 100bitri 277 . . . . . . . . 9 ((𝑥𝑄𝑦𝑄) ↔ ((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
102 reeanv 3369 . . . . . . . . . . 11 (∃𝑠𝐵𝑡𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) ↔ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
103 simp1ll 1232 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝜑)
104103, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
105 simp1lr 1233 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑎𝐵)
106 simp1rl 1234 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑥𝑉)
10713, 7, 14, 8lmodvscl 19653 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑥𝑉) → (𝑎 · 𝑥) ∈ 𝑉)
108104, 105, 106, 107syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · 𝑥) ∈ 𝑉)
109 simp1rr 1235 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑦𝑉)
11013, 21lmodvacl 19650 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑎 · 𝑥) ∈ 𝑉𝑦𝑉) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉)
111104, 108, 109, 110syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉)
112 simp2l 1195 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑠𝐵)
113 eqid 2823 . . . . . . . . . . . . . . . . . 18 (.r𝐹) = (.r𝐹)
1147, 8, 113lmodmcl 19648 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑠𝐵) → (𝑎(.r𝐹)𝑠) ∈ 𝐵)
115104, 105, 112, 114syl3anc 1367 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎(.r𝐹)𝑠) ∈ 𝐵)
116 simp2r 1196 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑡𝐵)
117 eqid 2823 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
1187, 8, 117lmodacl 19647 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝑎(.r𝐹)𝑠) ∈ 𝐵𝑡𝐵) → ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵)
119104, 115, 116, 118syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵)
120103, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
12113, 7, 14, 8lmodvscl 19653 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ 𝑠𝐵𝑌𝑉) → (𝑠 · 𝑌) ∈ 𝑉)
122104, 112, 120, 121syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑠 · 𝑌) ∈ 𝑉)
12313, 7, 14, 8lmodvscl 19653 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑠 · 𝑌) ∈ 𝑉) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉)
124104, 105, 122, 123syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉)
12513, 7, 14, 8lmodvscl 19653 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑡𝐵𝑌𝑉) → (𝑡 · 𝑌) ∈ 𝑉)
126104, 116, 120, 125syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑡 · 𝑌) ∈ 𝑉)
12713, 21lmod4 19686 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑥) ∈ 𝑉𝑦𝑉) ∧ ((𝑎 · (𝑠 · 𝑌)) ∈ 𝑉 ∧ (𝑡 · 𝑌) ∈ 𝑉)) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
128104, 108, 109, 124, 126, 127syl122anc 1375 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
12913, 21, 7, 14, 8, 117lmodvsdir 19660 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ ((𝑎(.r𝐹)𝑠) ∈ 𝐵𝑡𝐵𝑌𝑉)) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)))
130104, 115, 116, 120, 129syl13anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)))
13113, 7, 14, 8, 113lmodvsass 19661 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ (𝑎𝐵𝑠𝐵𝑌𝑉)) → ((𝑎(.r𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌)))
132104, 105, 112, 120, 131syl13anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎(.r𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌)))
133132oveq1d 7173 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))
134130, 133eqtrd 2858 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))
135134oveq2d 7174 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))))
13613, 21, 7, 14, 8lmodvsdi 19659 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ (𝑎𝐵𝑥𝑉 ∧ (𝑠 · 𝑌) ∈ 𝑉)) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))))
137104, 105, 106, 122, 136syl13anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))))
138137oveq1d 7173 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
139128, 135, 1383eqtr4d 2868 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) = ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
140103, 56syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ∈ 𝑆)
141 simp3l 1197 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴))
142 simp3r 1198 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))
1437, 8, 21, 14, 54lsscl 19716 . . . . . . . . . . . . . . . . 17 (((𝑁𝐴) ∈ 𝑆 ∧ (𝑎𝐵 ∧ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁𝐴))
144140, 105, 141, 142, 143syl13anc 1368 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁𝐴))
145139, 144eqeltrd 2915 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴))
146 oveq1 7165 . . . . . . . . . . . . . . . . . 18 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → (𝑟 · 𝑌) = (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌))
147146oveq2d 7174 . . . . . . . . . . . . . . . . 17 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)))
148147eleq1d 2899 . . . . . . . . . . . . . . . 16 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → ((((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴)))
149148rspcev 3625 . . . . . . . . . . . . . . 15 ((((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵 ∧ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
150119, 145, 149syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
151 oveq1 7165 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (𝑧 + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)))
152151eleq1d 2899 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
153152rexbidv 3299 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
154153, 2elrab2 3685 . . . . . . . . . . . . . 14 (((𝑎 · 𝑥) + 𝑦) ∈ 𝑄 ↔ (((𝑎 · 𝑥) + 𝑦) ∈ 𝑉 ∧ ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
155111, 150, 154sylanbrc 585 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)
1561553exp 1115 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → ((𝑠𝐵𝑡𝐵) → (((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)))
157156rexlimdvv 3295 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑠𝐵𝑡𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
158102, 157syl5bir 245 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → ((∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
159158expimpd 456 . . . . . . . . 9 ((𝜑𝑎𝐵) → (((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
160101, 159syl5bi 244 . . . . . . . 8 ((𝜑𝑎𝐵) → ((𝑥𝑄𝑦𝑄) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
161160exp4b 433 . . . . . . 7 (𝜑 → (𝑎𝐵 → (𝑥𝑄 → (𝑦𝑄 → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))))
1621613imp2 1345 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑥𝑄𝑦𝑄)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)
16374, 75, 76, 77, 78, 79, 4, 80, 162islssd 19709 . . . . 5 (𝜑𝑄𝑆)
16454, 25lspid 19756 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑄𝑆) → (𝑁𝑄) = 𝑄)
1651, 163, 164syl2anc 586 . . . 4 (𝜑 → (𝑁𝑄) = 𝑄)
16673, 165sseqtrd 4009 . . 3 (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑄)
167 lspsolv.x . . 3 (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
168166, 167sseldd 3970 . 2 (𝜑𝑋𝑄)
169 oveq1 7165 . . . . . 6 (𝑧 = 𝑋 → (𝑧 + (𝑟 · 𝑌)) = (𝑋 + (𝑟 · 𝑌)))
170169eleq1d 2899 . . . . 5 (𝑧 = 𝑋 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
171170rexbidv 3299 . . . 4 (𝑧 = 𝑋 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
172171, 2elrab2 3685 . . 3 (𝑋𝑄 ↔ (𝑋𝑉 ∧ ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
173172simprbi 499 . 2 (𝑋𝑄 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
174168, 173syl 17 1 (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  cun 3936  wss 3938  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106  1rcur 19253  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706  df-lsp 19746
This theorem is referenced by:  lspsolv  19917
  Copyright terms: Public domain W3C validator