MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspss Structured version   Visualization version   GIF version

Theorem lspss 19685
Description: Span preserves subset ordering. (spanss 29052 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspss ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))

Proof of Theorem lspss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1185 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → 𝑇𝑈)
2 sstr2 3971 . . . . 5 (𝑇𝑈 → (𝑈𝑡𝑇𝑡))
31, 2syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) ∧ 𝑡 ∈ (LSubSp‘𝑊)) → (𝑈𝑡𝑇𝑡))
43ss2rabdv 4049 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
5 intss 4888 . . 3 ({𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
64, 5syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡} ⊆ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
7 simp1 1128 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑊 ∈ LMod)
8 simp3 1130 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑈)
9 simp2 1129 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑈𝑉)
108, 9sstrd 3974 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → 𝑇𝑉)
11 lspss.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2818 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 lspss.n . . . 4 𝑁 = (LSpan‘𝑊)
1411, 12, 13lspval 19676 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
157, 10, 14syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑇𝑡})
1611, 12, 13lspval 19676 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
17163adant3 1124 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑈) = {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈𝑡})
186, 15, 173sstr4d 4011 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  {crab 3139  wss 3933   cint 4867  cfv 6348  Basecbs 16471  LModclmod 19563  LSubSpclss 19632  LSpanclspn 19672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-lmod 19565  df-lss 19633  df-lsp 19673
This theorem is referenced by:  lspun  19688  lspssp  19689  lspprid1  19698  lbspss  19783  lspsolvlem  19843  lspsolv  19844  lsppratlem3  19850  lbsextlem2  19860  lbsextlem3  19861  lbsextlem4  19862  lindfrn  20893  f1lindf  20894  lindsunlem  30919  dimkerim  30922  lindsadd  34766  lssats  36028  lpssat  36029  lssatle  36031  lssat  36032  dvhdimlem  38460  dvh3dim3N  38465  mapdindp2  38737  lspindp5  38786
  Copyright terms: Public domain W3C validator