Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatle Structured version   Visualization version   GIF version

Theorem lssatle 34620
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 29358 analog.) (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lssatle.s 𝑆 = (LSubSp‘𝑊)
lssatle.a 𝐴 = (LSAtoms‘𝑊)
lssatle.w (𝜑𝑊 ∈ LMod)
lssatle.t (𝜑𝑇𝑆)
lssatle.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssatle (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hint:   𝜑(𝑝)

Proof of Theorem lssatle
StepHypRef Expression
1 sstr 3644 . . . 4 ((𝑝𝑇𝑇𝑈) → 𝑝𝑈)
21expcom 450 . . 3 (𝑇𝑈 → (𝑝𝑇𝑝𝑈))
32ralrimivw 2996 . 2 (𝑇𝑈 → ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
4 ss2rab 3711 . . 3 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
5 lssatle.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
65adantr 480 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
7 lssatle.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
8 lssatle.a . . . . . . . . . 10 𝐴 = (LSAtoms‘𝑊)
97, 8lsatlss 34601 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐴𝑆)
10 rabss2 3718 . . . . . . . . 9 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
11 uniss 4490 . . . . . . . . 9 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
125, 9, 10, 114syl 19 . . . . . . . 8 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
13 lssatle.u . . . . . . . . . 10 (𝜑𝑈𝑆)
14 unimax 4505 . . . . . . . . . 10 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1513, 14syl 17 . . . . . . . . 9 (𝜑 {𝑝𝑆𝑝𝑈} = 𝑈)
16 eqid 2651 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
1716, 7lssss 18985 . . . . . . . . . 10 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1813, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ⊆ (Base‘𝑊))
1915, 18eqsstrd 3672 . . . . . . . 8 (𝜑 {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2012, 19sstrd 3646 . . . . . . 7 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
2120adantr 480 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4490 . . . . . . 7 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 481 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2651 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
2516, 24lspss 19032 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
266, 21, 23, 25syl3anc 1366 . . . . 5 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
2726ex 449 . . . 4 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
28 lssatle.t . . . . . 6 (𝜑𝑇𝑆)
297, 24, 8lssats 34617 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
305, 28, 29syl2anc 694 . . . . 5 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
317, 24, 8lssats 34617 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
325, 13, 31syl2anc 694 . . . . 5 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3330, 32sseq12d 3667 . . . 4 (𝜑 → (𝑇𝑈 ↔ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
3427, 33sylibrd 249 . . 3 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → 𝑇𝑈))
354, 34syl5bir 233 . 2 (𝜑 → (∀𝑝𝐴 (𝑝𝑇𝑝𝑈) → 𝑇𝑈))
363, 35impbid2 216 1 (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  wss 3607   cuni 4468  cfv 5926  Basecbs 15904  LModclmod 18911  LSubSpclss 18980  LSpanclspn 19019  LSAtomsclsa 34579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lsatoms 34581
This theorem is referenced by:  mapdordlem2  37243
  Copyright terms: Public domain W3C validator