![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssats2 | Structured version Visualization version GIF version |
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
Ref | Expression |
---|---|
lssats2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssats2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lssats2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssats2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssats2 | ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
2 | lssats2.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | 2 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑊 ∈ LMod) |
4 | lssats2.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
5 | eqid 2724 | . . . . . . . . 9 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
6 | lssats2.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 5, 6 | lssel 19061 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
8 | 4, 7 | sylan 489 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
9 | lssats2.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 5, 9 | lspsnid 19116 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
11 | 3, 8, 10 | syl2anc 696 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (𝑁‘{𝑦})) |
12 | sneq 4295 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
13 | 12 | fveq2d 6308 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦})) |
14 | 13 | eleq2d 2789 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦}))) |
15 | 14 | rspcev 3413 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑈 ∧ 𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
16 | 1, 11, 15 | syl2anc 696 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) |
17 | 16 | ex 449 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑈 → ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
18 | 2 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑊 ∈ LMod) |
19 | 4 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
20 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
21 | 6, 9, 18, 19, 20 | lspsnel5a 19119 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈) |
22 | 21 | sseld 3708 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
23 | 22 | rexlimdva 3133 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦 ∈ 𝑈)) |
24 | 17, 23 | impbid 202 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥}))) |
25 | eliun 4632 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥 ∈ 𝑈 𝑦 ∈ (𝑁‘{𝑥})) | |
26 | 24, 25 | syl6bbr 278 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥}))) |
27 | 26 | eqrdv 2722 | 1 ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∃wrex 3015 {csn 4285 ∪ ciun 4628 ‘cfv 6001 Basecbs 15980 LModclmod 18986 LSubSpclss 19055 LSpanclspn 19094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-lmod 18988 df-lss 19056 df-lsp 19095 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |