MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssats2 Structured version   Visualization version   GIF version

Theorem lssats2 19123
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.)
Hypotheses
Ref Expression
lssats2.s 𝑆 = (LSubSp‘𝑊)
lssats2.n 𝑁 = (LSpan‘𝑊)
lssats2.w (𝜑𝑊 ∈ LMod)
lssats2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssats2 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑊(𝑥)

Proof of Theorem lssats2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦𝑈)
2 lssats2.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
32adantr 472 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑊 ∈ LMod)
4 lssats2.u . . . . . . . 8 (𝜑𝑈𝑆)
5 eqid 2724 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
6 lssats2.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
75, 6lssel 19061 . . . . . . . 8 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
84, 7sylan 489 . . . . . . 7 ((𝜑𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
9 lssats2.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
105, 9lspsnid 19116 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
113, 8, 10syl2anc 696 . . . . . 6 ((𝜑𝑦𝑈) → 𝑦 ∈ (𝑁‘{𝑦}))
12 sneq 4295 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1312fveq2d 6308 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘{𝑥}) = (𝑁‘{𝑦}))
1413eleq2d 2789 . . . . . . 7 (𝑥 = 𝑦 → (𝑦 ∈ (𝑁‘{𝑥}) ↔ 𝑦 ∈ (𝑁‘{𝑦})))
1514rspcev 3413 . . . . . 6 ((𝑦𝑈𝑦 ∈ (𝑁‘{𝑦})) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
161, 11, 15syl2anc 696 . . . . 5 ((𝜑𝑦𝑈) → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
1716ex 449 . . . 4 (𝜑 → (𝑦𝑈 → ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
182adantr 472 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑊 ∈ LMod)
194adantr 472 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑈𝑆)
20 simpr 479 . . . . . . 7 ((𝜑𝑥𝑈) → 𝑥𝑈)
216, 9, 18, 19, 20lspsnel5a 19119 . . . . . 6 ((𝜑𝑥𝑈) → (𝑁‘{𝑥}) ⊆ 𝑈)
2221sseld 3708 . . . . 5 ((𝜑𝑥𝑈) → (𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2322rexlimdva 3133 . . . 4 (𝜑 → (∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}) → 𝑦𝑈))
2417, 23impbid 202 . . 3 (𝜑 → (𝑦𝑈 ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥})))
25 eliun 4632 . . 3 (𝑦 𝑥𝑈 (𝑁‘{𝑥}) ↔ ∃𝑥𝑈 𝑦 ∈ (𝑁‘{𝑥}))
2624, 25syl6bbr 278 . 2 (𝜑 → (𝑦𝑈𝑦 𝑥𝑈 (𝑁‘{𝑥})))
2726eqrdv 2722 1 (𝜑𝑈 = 𝑥𝑈 (𝑁‘{𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wrex 3015  {csn 4285   ciun 4628  cfv 6001  Basecbs 15980  LModclmod 18986  LSubSpclss 19055  LSpanclspn 19094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-0g 16225  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-grp 17547  df-lmod 18988  df-lss 19056  df-lsp 19095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator