MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvnegcl Structured version   Visualization version   GIF version

Theorem lssvnegcl 19004
Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypotheses
Ref Expression
lssvnegcl.s 𝑆 = (LSubSp‘𝑊)
lssvnegcl.n 𝑁 = (invg𝑊)
Assertion
Ref Expression
lssvnegcl ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)

Proof of Theorem lssvnegcl
StepHypRef Expression
1 eqid 2651 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 lssvnegcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
31, 2lssel 18986 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
4 lssvnegcl.n . . . . 5 𝑁 = (invg𝑊)
5 eqid 2651 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2651 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 eqid 2651 . . . . 5 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
8 eqid 2651 . . . . 5 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
91, 4, 5, 6, 7, 8lmodvneg1 18954 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑁𝑋))
103, 9sylan2 490 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑆𝑋𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑁𝑋))
11103impb 1279 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑁𝑋))
12 simp1 1081 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑊 ∈ LMod)
13 simp2 1082 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑈𝑆)
145lmodring 18919 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
15143ad2ant1 1102 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (Scalar‘𝑊) ∈ Ring)
16 ringgrp 18598 . . . . 5 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
1715, 16syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (Scalar‘𝑊) ∈ Grp)
18 eqid 2651 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
1918, 7ringidcl 18614 . . . . 5 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2015, 19syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2118, 8grpinvcl 17514 . . . 4 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2217, 20, 21syl2anc 694 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
23 simp3 1083 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑋𝑈)
245, 6, 18, 2lssvscl 19003 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) ∈ 𝑈)
2512, 13, 22, 23, 24syl22anc 1367 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) ∈ 𝑈)
2611, 25eqeltrrd 2731 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  Scalarcsca 15991   ·𝑠 cvsca 15992  Grpcgrp 17469  invgcminusg 17470  1rcur 18547  Ringcrg 18593  LModclmod 18911  LSubSpclss 18980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981
This theorem is referenced by:  lsssubg  19005  lidlnegcl  19262  mapdpglem14  37291  baerlem3lem1  37313  baerlem5amN  37322  baerlem5bmN  37323  baerlem5abmN  37324
  Copyright terms: Public domain W3C validator