MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvs0or Structured version   Visualization version   GIF version

Theorem lssvs0or 19029
Description: If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015.)
Hypotheses
Ref Expression
lssvs0or.v 𝑉 = (Base‘𝑊)
lssvs0or.t · = ( ·𝑠𝑊)
lssvs0or.f 𝐹 = (Scalar‘𝑊)
lssvs0or.k 𝐾 = (Base‘𝐹)
lssvs0or.o 0 = (0g𝐹)
lssvs0or.s 𝑆 = (LSubSp‘𝑊)
lssvs0or.w (𝜑𝑊 ∈ LVec)
lssvs0or.u (𝜑𝑈𝑆)
lssvs0or.x (𝜑𝑋𝑉)
lssvs0or.a (𝜑𝐴𝐾)
Assertion
Ref Expression
lssvs0or (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0𝑋𝑈)))

Proof of Theorem lssvs0or
StepHypRef Expression
1 lssvs0or.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
2 lssvs0or.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
32lvecdrng 19024 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ DivRing)
54ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐹 ∈ DivRing)
6 lssvs0or.a . . . . . . . . . . 11 (𝜑𝐴𝐾)
76ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐴𝐾)
8 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐴0 )
9 lssvs0or.k . . . . . . . . . . 11 𝐾 = (Base‘𝐹)
10 lssvs0or.o . . . . . . . . . . 11 0 = (0g𝐹)
11 eqid 2621 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
12 eqid 2621 . . . . . . . . . . 11 (1r𝐹) = (1r𝐹)
13 eqid 2621 . . . . . . . . . . 11 (invr𝐹) = (invr𝐹)
149, 10, 11, 12, 13drnginvrl 18687 . . . . . . . . . 10 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
155, 7, 8, 14syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
1615oveq1d 6619 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = ((1r𝐹) · 𝑋))
17 lveclmod 19025 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
181, 17syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
1918ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑊 ∈ LMod)
209, 10, 13drnginvrcl 18685 . . . . . . . . . 10 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → ((invr𝐹)‘𝐴) ∈ 𝐾)
215, 7, 8, 20syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((invr𝐹)‘𝐴) ∈ 𝐾)
22 lssvs0or.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2322ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋𝑉)
24 lssvs0or.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
25 lssvs0or.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2624, 2, 25, 9, 11lmodvsass 18809 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (((invr𝐹)‘𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
2719, 21, 7, 23, 26syl13anc 1325 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
2824, 2, 25, 12lmodvs1 18812 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
2919, 23, 28syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((1r𝐹) · 𝑋) = 𝑋)
3016, 27, 293eqtr3rd 2664 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋 = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
31 lssvs0or.u . . . . . . . . 9 (𝜑𝑈𝑆)
3231ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑈𝑆)
33 simplr 791 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (𝐴 · 𝑋) ∈ 𝑈)
34 lssvs0or.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
352, 25, 9, 34lssvscl 18874 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (((invr𝐹)‘𝐴) ∈ 𝐾 ∧ (𝐴 · 𝑋) ∈ 𝑈)) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) ∈ 𝑈)
3619, 32, 21, 33, 35syl22anc 1324 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) ∈ 𝑈)
3730, 36eqeltrd 2698 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋𝑈)
3837ex 450 . . . . 5 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝐴0𝑋𝑈))
3938necon1bd 2808 . . . 4 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (¬ 𝑋𝑈𝐴 = 0 ))
4039orrd 393 . . 3 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝑋𝑈𝐴 = 0 ))
4140orcomd 403 . 2 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝐴 = 0𝑋𝑈))
42 oveq1 6611 . . . . 5 (𝐴 = 0 → (𝐴 · 𝑋) = ( 0 · 𝑋))
4342adantl 482 . . . 4 ((𝜑𝐴 = 0 ) → (𝐴 · 𝑋) = ( 0 · 𝑋))
44 eqid 2621 . . . . . . . 8 (0g𝑊) = (0g𝑊)
4524, 2, 25, 10, 44lmod0vs 18817 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 · 𝑋) = (0g𝑊))
4618, 22, 45syl2anc 692 . . . . . 6 (𝜑 → ( 0 · 𝑋) = (0g𝑊))
4744, 34lss0cl 18866 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
4818, 31, 47syl2anc 692 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑈)
4946, 48eqeltrd 2698 . . . . 5 (𝜑 → ( 0 · 𝑋) ∈ 𝑈)
5049adantr 481 . . . 4 ((𝜑𝐴 = 0 ) → ( 0 · 𝑋) ∈ 𝑈)
5143, 50eqeltrd 2698 . . 3 ((𝜑𝐴 = 0 ) → (𝐴 · 𝑋) ∈ 𝑈)
5218adantr 481 . . . 4 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
5331adantr 481 . . . 4 ((𝜑𝑋𝑈) → 𝑈𝑆)
546adantr 481 . . . 4 ((𝜑𝑋𝑈) → 𝐴𝐾)
55 simpr 477 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
562, 25, 9, 34lssvscl 18874 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝐴𝐾𝑋𝑈)) → (𝐴 · 𝑋) ∈ 𝑈)
5752, 53, 54, 55, 56syl22anc 1324 . . 3 ((𝜑𝑋𝑈) → (𝐴 · 𝑋) ∈ 𝑈)
5851, 57jaodan 825 . 2 ((𝜑 ∧ (𝐴 = 0𝑋𝑈)) → (𝐴 · 𝑋) ∈ 𝑈)
5941, 58impbida 876 1 (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0𝑋𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  cfv 5847  (class class class)co 6604  Basecbs 15781  .rcmulr 15863  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  1rcur 18422  invrcinvr 18592  DivRingcdr 18668  LModclmod 18784  LSubSpclss 18851  LVecclvec 19021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-lmod 18786  df-lss 18852  df-lvec 19022
This theorem is referenced by:  lspdisj  19044
  Copyright terms: Public domain W3C validator