Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lt3addmuld Structured version   Visualization version   GIF version

Theorem lt3addmuld 38966
Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lt3addmuld.a (𝜑𝐴 ∈ ℝ)
lt3addmuld.b (𝜑𝐵 ∈ ℝ)
lt3addmuld.c (𝜑𝐶 ∈ ℝ)
lt3addmuld.d (𝜑𝐷 ∈ ℝ)
lt3addmuld.altd (𝜑𝐴 < 𝐷)
lt3addmuld.bltd (𝜑𝐵 < 𝐷)
lt3addmuld.cltd (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
lt3addmuld (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷))

Proof of Theorem lt3addmuld
StepHypRef Expression
1 lt3addmuld.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 lt3addmuld.b . . . 4 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10014 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 lt3addmuld.c . . 3 (𝜑𝐶 ∈ ℝ)
5 2re 11035 . . . . 5 2 ∈ ℝ
65a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
7 lt3addmuld.d . . . 4 (𝜑𝐷 ∈ ℝ)
86, 7remulcld 10015 . . 3 (𝜑 → (2 · 𝐷) ∈ ℝ)
9 lt3addmuld.altd . . . 4 (𝜑𝐴 < 𝐷)
10 lt3addmuld.bltd . . . 4 (𝜑𝐵 < 𝐷)
111, 2, 7, 9, 10lt2addmuld 11227 . . 3 (𝜑 → (𝐴 + 𝐵) < (2 · 𝐷))
12 lt3addmuld.cltd . . 3 (𝜑𝐶 < 𝐷)
133, 4, 8, 7, 11, 12lt2addd 10595 . 2 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < ((2 · 𝐷) + 𝐷))
146recnd 10013 . . . 4 (𝜑 → 2 ∈ ℂ)
157recnd 10013 . . . 4 (𝜑𝐷 ∈ ℂ)
1614, 15adddirp1d 10011 . . 3 (𝜑 → ((2 + 1) · 𝐷) = ((2 · 𝐷) + 𝐷))
17 2p1e3 11096 . . . . 5 (2 + 1) = 3
1817a1i 11 . . . 4 (𝜑 → (2 + 1) = 3)
1918oveq1d 6620 . . 3 (𝜑 → ((2 + 1) · 𝐷) = (3 · 𝐷))
2016, 19eqtr3d 2662 . 2 (𝜑 → ((2 · 𝐷) + 𝐷) = (3 · 𝐷))
2113, 20breqtrd 4644 1 (𝜑 → ((𝐴 + 𝐵) + 𝐶) < (3 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1992   class class class wbr 4618  (class class class)co 6605  cr 9880  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  2c2 11015  3c3 11016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-2 11024  df-3 11025
This theorem is referenced by:  lt4addmuld  38971
  Copyright terms: Public domain W3C validator