MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd1dd Structured version   Visualization version   GIF version

Theorem ltadd1dd 11239
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
ltadd1dd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltadd1dd (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))

Proof of Theorem ltadd1dd
StepHypRef Expression
1 ltadd1dd.4 . 2 (𝜑𝐴 < 𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4ltadd1d 11221 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
61, 5mpbid 233 1 (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524   + caddc 10528   < clt 10663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668
This theorem is referenced by:  nnne0  11659  fzoaddel  13078  elincfzoext  13083  fladdz  13183  fzsdom2  13777  sadcaddlem  15794  iserodd  16160  4sqlem12  16280  efif1olem1  25053  atanlogsublem  25420  subfacval3  32333  poimirlem15  34788  itg2addnclem3  34826  fltnlta  39153  3cubeslem1  39159  rmspecfund  39384  jm2.24nn  39434  ltadd12dd  41487  infleinflem2  41515  iooshift  41674  iblspltprt  42134  itgspltprt  42140  stirlinglem5  42240  dirkercncflem1  42265  fourierdlem19  42288  fourierdlem35  42304  fourierdlem41  42310  fourierdlem47  42315  fourierdlem48  42316  fourierdlem49  42317  fourierdlem51  42319  fourierdlem64  42332  fourierdlem79  42347  fourierdlem81  42349  fourierdlem92  42360  fourierdlem112  42380  sqwvfoura  42390  sqwvfourb  42391  fouriersw  42393  smflimlem4  42927  2pwp1prm  43628
  Copyright terms: Public domain W3C validator