MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddrp Structured version   Visualization version   GIF version

Theorem ltaddrp 11949
Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
ltaddrp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))

Proof of Theorem ltaddrp
StepHypRef Expression
1 elrp 11916 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
2 ltaddpos 10599 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
32biimpd 219 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
43expcom 450 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵𝐴 < (𝐴 + 𝐵))))
54imp32 448 . 2 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 𝐴 < (𝐴 + 𝐵))
61, 5sylan2b 493 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2071   class class class wbr 4728  (class class class)co 6733  cr 10016  0cc0 10017   + caddc 10020   < clt 10155  +crp 11914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-op 4260  df-uni 4513  df-br 4729  df-opab 4789  df-mpt 4806  df-id 5096  df-po 5107  df-so 5108  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-ov 6736  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-pnf 10157  df-mnf 10158  df-ltxr 10160  df-rp 11915
This theorem is referenced by:  ltaddrpd  11987  lswccatn0lsw  13452  efgt1  14934  efgsfo  18241  efgredlemd  18246  efgredlem  18249  iccntr  22714  reconnlem2  22720  opnreen  22724  minveclem3b  23288  logimul  24448  emcllem2  24811  emcllem4  24813  emcllem6  24815  perfectlem2  25043  bclbnd  25093  pntibndlem1  25366  pntlemd  25371  pntlemc  25372  pntlemr  25379  pntlemp  25387  smcnlem  27750  dp2ltc  29792  dpgti  29812  ballotlem2  30748  poimir  33642  stoweidlem59  40664  perfectALTVlem2  42026
  Copyright terms: Public domain W3C validator