MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lterpq Structured version   Visualization version   GIF version

Theorem lterpq 10394
Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
lterpq (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵))

Proof of Theorem lterpq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltpq 10334 . . . 4 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
2 opabssxp 5645 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))} ⊆ ((N × N) × (N × N))
31, 2eqsstri 4003 . . 3 <pQ ⊆ ((N × N) × (N × N))
43brel 5619 . 2 (𝐴 <pQ 𝐵 → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
5 ltrelnq 10350 . . . 4 <Q ⊆ (Q × Q)
65brel 5619 . . 3 (([Q]‘𝐴) <Q ([Q]‘𝐵) → (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q))
7 elpqn 10349 . . . 4 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
8 elpqn 10349 . . . 4 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
9 nqerf 10354 . . . . . . 7 [Q]:(N × N)⟶Q
109fdmi 6526 . . . . . 6 dom [Q] = (N × N)
11 0nelxp 5591 . . . . . 6 ¬ ∅ ∈ (N × N)
1210, 11ndmfvrcl 6703 . . . . 5 (([Q]‘𝐴) ∈ (N × N) → 𝐴 ∈ (N × N))
1310, 11ndmfvrcl 6703 . . . . 5 (([Q]‘𝐵) ∈ (N × N) → 𝐵 ∈ (N × N))
1412, 13anim12i 614 . . . 4 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
157, 8, 14syl2an 597 . . 3 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
166, 15syl 17 . 2 (([Q]‘𝐴) <Q ([Q]‘𝐵) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
17 xp1st 7723 . . . . 5 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
18 xp2nd 7724 . . . . 5 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
19 mulclpi 10317 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
2017, 18, 19syl2an 597 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
21 ltmpi 10328 . . . 4 (((1st𝐴) ·N (2nd𝐵)) ∈ N → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
2220, 21syl 17 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
23 nqercl 10355 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
24 nqercl 10355 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
25 ordpinq 10367 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) <Q ([Q]‘𝐵) ↔ ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
2623, 24, 25syl2an 597 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) <Q ([Q]‘𝐵) ↔ ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
27 1st2nd2 7730 . . . . . 6 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
28 1st2nd2 7730 . . . . . 6 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
2927, 28breqan12d 5084 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
30 ordpipq 10366 . . . . 5 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
3129, 30syl6bb 289 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
32 xp1st 7723 . . . . . . 7 (([Q]‘𝐴) ∈ (N × N) → (1st ‘([Q]‘𝐴)) ∈ N)
3323, 7, 323syl 18 . . . . . 6 (𝐴 ∈ (N × N) → (1st ‘([Q]‘𝐴)) ∈ N)
34 xp2nd 7724 . . . . . . 7 (([Q]‘𝐵) ∈ (N × N) → (2nd ‘([Q]‘𝐵)) ∈ N)
3524, 8, 343syl 18 . . . . . 6 (𝐵 ∈ (N × N) → (2nd ‘([Q]‘𝐵)) ∈ N)
36 mulclpi 10317 . . . . . 6 (((1st ‘([Q]‘𝐴)) ∈ N ∧ (2nd ‘([Q]‘𝐵)) ∈ N) → ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N)
3733, 35, 36syl2an 597 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N)
38 ltmpi 10328 . . . . 5 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴)))))
3937, 38syl 17 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴)))))
40 mulcompi 10320 . . . . . 6 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))))
4140a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))))
42 nqerrel 10356 . . . . . . . . 9 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
4323, 7syl 17 . . . . . . . . . 10 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
44 enqbreq2 10344 . . . . . . . . . 10 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴))))
4543, 44mpdan 685 . . . . . . . . 9 (𝐴 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴))))
4642, 45mpbid 234 . . . . . . . 8 (𝐴 ∈ (N × N) → ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)))
4746eqcomd 2829 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) = ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))))
48 nqerrel 10356 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
4924, 8syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
50 enqbreq2 10344 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
5149, 50mpdan 685 . . . . . . . 8 (𝐵 ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
5248, 51mpbid 234 . . . . . . 7 (𝐵 ∈ (N × N) → ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
5347, 52oveqan12d 7177 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵)))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
54 mulcompi 10320 . . . . . . 7 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))))
55 fvex 6685 . . . . . . . 8 (1st𝐵) ∈ V
56 fvex 6685 . . . . . . . 8 (2nd𝐴) ∈ V
57 fvex 6685 . . . . . . . 8 (1st ‘([Q]‘𝐴)) ∈ V
58 mulcompi 10320 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
59 mulasspi 10321 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
60 fvex 6685 . . . . . . . 8 (2nd ‘([Q]‘𝐵)) ∈ V
6155, 56, 57, 58, 59, 60caov411 7382 . . . . . . 7 (((1st𝐵) ·N (2nd𝐴)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) = (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))))
6254, 61eqtri 2846 . . . . . 6 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))))
63 mulcompi 10320 . . . . . . 7 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))) = (((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st𝐴) ·N (2nd𝐵)))
64 fvex 6685 . . . . . . . 8 (1st ‘([Q]‘𝐵)) ∈ V
65 fvex 6685 . . . . . . . 8 (2nd ‘([Q]‘𝐴)) ∈ V
66 fvex 6685 . . . . . . . 8 (1st𝐴) ∈ V
67 fvex 6685 . . . . . . . 8 (2nd𝐵) ∈ V
6864, 65, 66, 58, 59, 67caov411 7382 . . . . . . 7 (((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
6963, 68eqtri 2846 . . . . . 6 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
7053, 62, 693eqtr4g 2883 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
7141, 70breq12d 5081 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
7231, 39, 713bitrd 307 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
7322, 26, 723bitr4rd 314 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵)))
744, 16, 73pm5.21nii 382 1 (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  cop 4575   class class class wbr 5068  {copab 5130   × cxp 5555  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Ncnpi 10268   ·N cmi 10270   <N clti 10271   <pQ cltpq 10274   ~Q ceq 10275  Qcnq 10276  [Q]cerq 10278   <Q cltq 10282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ni 10296  df-mi 10298  df-lti 10299  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-1nq 10340  df-ltnq 10342
This theorem is referenced by:  ltanq  10395  ltmnq  10396  1lt2nq  10397
  Copyright terms: Public domain W3C validator