MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem3 Structured version   Visualization version   GIF version

Theorem ltexprlem3 9712
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem3 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑧
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem3
StepHypRef Expression
1 elprnq 9665 . . . . . . . . . 10 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
2 addnqf 9622 . . . . . . . . . . . . 13 +Q :(Q × Q)⟶Q
32fdmi 5947 . . . . . . . . . . . 12 dom +Q = (Q × Q)
4 0nnq 9598 . . . . . . . . . . . 12 ¬ ∅ ∈ Q
53, 4ndmovrcl 6691 . . . . . . . . . . 11 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
65simpld 473 . . . . . . . . . 10 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
7 ltanq 9645 . . . . . . . . . 10 (𝑦Q → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥)))
81, 6, 73syl 18 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥)))
9 prcdnq 9667 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 +Q 𝑧) <Q (𝑦 +Q 𝑥) → (𝑦 +Q 𝑧) ∈ 𝐵))
108, 9sylbid 228 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑧 <Q 𝑥 → (𝑦 +Q 𝑧) ∈ 𝐵))
1110impancom 454 . . . . . . 7 ((𝐵P𝑧 <Q 𝑥) → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑦 +Q 𝑧) ∈ 𝐵))
1211anim2d 586 . . . . . 6 ((𝐵P𝑧 <Q 𝑥) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
1312eximdv 1831 . . . . 5 ((𝐵P𝑧 <Q 𝑥) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
14 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
1514abeq2i 2717 . . . . 5 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
16 vex 3171 . . . . . 6 𝑧 ∈ V
17 oveq2 6531 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧))
1817eleq1d 2667 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
1918anbi2d 735 . . . . . . 7 (𝑥 = 𝑧 → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
2019exbidv 1835 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
2116, 20, 14elab2 3318 . . . . 5 (𝑧𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))
2213, 15, 213imtr4g 283 . . . 4 ((𝐵P𝑧 <Q 𝑥) → (𝑥𝐶𝑧𝐶))
2322ex 448 . . 3 (𝐵P → (𝑧 <Q 𝑥 → (𝑥𝐶𝑧𝐶)))
2423com23 83 . 2 (𝐵P → (𝑥𝐶 → (𝑧 <Q 𝑥𝑧𝐶)))
2524alrimdv 1842 1 (𝐵P → (𝑥𝐶 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wex 1694  wcel 1975  {cab 2591   class class class wbr 4573   × cxp 5022  (class class class)co 6523  Qcnq 9526   +Q cplq 9529   <Q cltq 9532  Pcnp 9533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-omul 7425  df-er 7602  df-ni 9546  df-pli 9547  df-mi 9548  df-lti 9549  df-plpq 9582  df-ltpq 9584  df-enq 9585  df-nq 9586  df-erq 9587  df-plq 9588  df-1nq 9590  df-ltnq 9592  df-np 9655
This theorem is referenced by:  ltexprlem5  9714
  Copyright terms: Public domain W3C validator