MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmpi Structured version   Visualization version   GIF version

Theorem ltmpi 10320
Description: Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltmpi (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))

Proof of Theorem ltmpi
StepHypRef Expression
1 dmmulpi 10307 . 2 dom ·N = (N × N)
2 ltrelpi 10305 . 2 <N ⊆ (N × N)
3 0npi 10298 . 2 ¬ ∅ ∈ N
4 pinn 10294 . . . . . 6 (𝐴N𝐴 ∈ ω)
5 pinn 10294 . . . . . 6 (𝐵N𝐵 ∈ ω)
6 elni2 10293 . . . . . . 7 (𝐶N ↔ (𝐶 ∈ ω ∧ ∅ ∈ 𝐶))
7 iba 530 . . . . . . . . . 10 (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
8 nnmord 8252 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
97, 8sylan9bbr 513 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
1093exp1 1348 . . . . . . . 8 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))))
1110imp4b 424 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
126, 11syl5bi 244 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
134, 5, 12syl2an 597 . . . . 5 ((𝐴N𝐵N) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
1413imp 409 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
15 ltpiord 10303 . . . . 5 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1615adantr 483 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
17 mulclpi 10309 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) ∈ N)
18 mulclpi 10309 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) ∈ N)
19 ltpiord 10303 . . . . . . . 8 (((𝐶 ·N 𝐴) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
2017, 18, 19syl2an 597 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
21 mulpiord 10301 . . . . . . . . 9 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴))
2221adantr 483 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴))
23 mulpiord 10301 . . . . . . . . 9 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵))
2423adantl 484 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵))
2522, 24eleq12d 2907 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2620, 25bitrd 281 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2726anandis 676 . . . . 5 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2827ancoms 461 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2914, 16, 283bitr4d 313 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
30293impa 1106 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
311, 2, 3, 30ndmovord 7332 1 (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  c0 4290   class class class wbr 5058  (class class class)co 7150  ωcom 7574   ·o comu 8094  Ncnpi 10260   ·N cmi 10262   <N clti 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-omul 8101  df-ni 10288  df-mi 10290  df-lti 10291
This theorem is referenced by:  ltsonq  10385  lterpq  10386  ltanq  10387  ltmnq  10388  archnq  10396
  Copyright terms: Public domain W3C validator