MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul12a Structured version   Visualization version   GIF version

Theorem ltmul12a 10831
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 797 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴 ∈ ℝ)
2 simpllr 798 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐵 ∈ ℝ)
3 simpll 789 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 𝐶 ∈ ℝ)
4 simprl 793 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 0 ≤ 𝐶)
53, 4jca 554 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
65ad2ant2l 781 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
7 ltle 10078 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
87imp 445 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98adantrl 751 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐴𝐵)
109ad2ant2r 782 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴𝐵)
11 lemul1a 10829 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
121, 2, 6, 10, 11syl31anc 1326 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
13 simplrl 799 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐶 ∈ ℝ)
14 simplrr 800 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐷 ∈ ℝ)
15 simpllr 798 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐵 ∈ ℝ)
16 0re 9992 . . . . . . . . . 10 0 ∈ ℝ
17 lelttr 10080 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1816, 17mp3an1 1408 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1918imp 445 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
2019adantlr 750 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
21 ltmul2 10826 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2213, 14, 15, 20, 21syl112anc 1327 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2322biimpa 501 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝐶 < 𝐷) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2423anasss 678 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝐶 < 𝐷)) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2524adantrrl 759 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
26 remulcl 9973 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
2726ad2ant2r 782 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
28 remulcl 9973 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
2928ad2ant2lr 783 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
30 remulcl 9973 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 · 𝐷) ∈ ℝ)
3130ad2ant2l 781 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
32 lelttr 10080 . . . . 5 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐷) ∈ ℝ) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3327, 29, 31, 32syl3anc 1323 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3433adantr 481 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3512, 25, 34mp2and 714 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
3635an4s 868 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987   class class class wbr 4618  (class class class)co 6610  cr 9887  0cc0 9888   · cmul 9893   < clt 10026  cle 10027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221
This theorem is referenced by:  ltmul12ad  10917  expmordi  37027  tgblthelfgott  41016  tgoldbach  41019  tgblthelfgottOLD  41023  tgoldbachOLD  41026
  Copyright terms: Public domain W3C validator