MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul12a Structured version   Visualization version   GIF version

Theorem ltmul12a 11484
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 771 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴 ∈ ℝ)
2 simpllr 772 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐵 ∈ ℝ)
3 simpll 763 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 𝐶 ∈ ℝ)
4 simprl 767 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → 0 ≤ 𝐶)
53, 4jca 512 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
65ad2ant2l 742 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
7 ltle 10717 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
87imp 407 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98adantrl 712 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐴𝐵)
109ad2ant2r 743 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → 𝐴𝐵)
11 lemul1a 11482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
121, 2, 6, 10, 11syl31anc 1365 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
13 simplrl 773 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐶 ∈ ℝ)
14 simplrr 774 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐷 ∈ ℝ)
15 simpllr 772 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 𝐵 ∈ ℝ)
16 0re 10631 . . . . . . . . . 10 0 ∈ ℝ
17 lelttr 10719 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1816, 17mp3an1 1439 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 < 𝐵) → 0 < 𝐵))
1918imp 407 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
2019adantlr 711 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → 0 < 𝐵)
21 ltmul2 11479 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2213, 14, 15, 20, 21syl112anc 1366 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐶 < 𝐷 ↔ (𝐵 · 𝐶) < (𝐵 · 𝐷)))
2322biimpa 477 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ 𝐶 < 𝐷) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2423anasss 467 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ 𝐶 < 𝐷)) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
2524adantrrl 720 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐵 · 𝐶) < (𝐵 · 𝐷))
26 remulcl 10610 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
2726ad2ant2r 743 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
28 remulcl 10610 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
2928ad2ant2lr 744 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
30 remulcl 10610 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 · 𝐷) ∈ ℝ)
3130ad2ant2l 742 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
32 lelttr 10719 . . . . 5 (((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐷) ∈ ℝ) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3327, 29, 31, 32syl3anc 1363 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3433adantr 481 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (((𝐴 · 𝐶) ≤ (𝐵 · 𝐶) ∧ (𝐵 · 𝐶) < (𝐵 · 𝐷)) → (𝐴 · 𝐶) < (𝐵 · 𝐷)))
3512, 25, 34mp2and 695 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ ((0 ≤ 𝐴𝐴 < 𝐵) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
3635an4s 656 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  0cc0 10525   · cmul 10530   < clt 10663  cle 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861
This theorem is referenced by:  ltmul12ad  11569  expmordi  13519  hgt750lem2  31822  3cubeslem1  39159  tgblthelfgott  43857  tgoldbach  43859
  Copyright terms: Public domain W3C validator