MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsymi Structured version   Visualization version   GIF version

Theorem ltnsymi 10008
Description: 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
ltnsymi (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)

Proof of Theorem ltnsymi
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 ltnsym 9987 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
41, 2, 3mp2an 703 1 (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 1976   class class class wbr 4577  cr 9792   < clt 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-pre-lttri 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-ltxr 9936
This theorem is referenced by:  recgt0  10719  recgt0ii  10781  inelr  10860  sinhalfpilem  23964  knoppndvlem13  31519  relexp01min  36848  konigsberg-av  41449
  Copyright terms: Public domain W3C validator