![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltprord | Structured version Visualization version GIF version |
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltprord | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ P ↔ 𝐴 ∈ P)) | |
2 | 1 | anbi1d 743 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝑦 ∈ P))) |
3 | psseq1 3836 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦)) | |
4 | 2, 3 | anbi12d 749 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦))) |
5 | eleq1 2827 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ P ↔ 𝐵 ∈ P)) | |
6 | 5 | anbi2d 742 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ P ∧ 𝑦 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐵 ∈ P))) |
7 | psseq2 3837 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵)) | |
8 | 6, 7 | anbi12d 749 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴 ∈ P ∧ 𝑦 ∈ P) ∧ 𝐴 ⊊ 𝑦) ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
9 | df-ltp 9999 | . . 3 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | |
10 | 4, 8, 9 | brabg 5144 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵))) |
11 | 10 | bianabs 960 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊊ wpss 3716 class class class wbr 4804 Pcnp 9873 <P cltp 9877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-ltp 9999 |
This theorem is referenced by: ltsopr 10046 ltaddpr 10048 ltexprlem7 10056 ltexpri 10057 suplem1pr 10066 suplem2pr 10067 |
Copyright terms: Public domain | W3C validator |