Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrmxnn0 Structured version   Visualization version   GIF version

Theorem ltrmxnn0 37833
 Description: The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
ltrmxnn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁)))

Proof of Theorem ltrmxnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 11438 . . . . . 6 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
2 frmx 37795 . . . . . . 7 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
32fovcl 6807 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
41, 3sylan2 490 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℕ0)
54nn0red 11390 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℝ)
6 eluzelre 11736 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
76adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ)
85, 7remulcld 10108 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ)
91peano2zd 11523 . . . . . 6 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℤ)
102fovcl 6807 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0)
119, 10sylan2 490 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0)
1211nn0red 11390 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℝ)
13 eluz2b2 11799 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1413simprbi 479 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
1514adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 1 < 𝐴)
16 rmxypos 37831 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
1716simpld 474 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑏))
18 ltmulgt11 10921 . . . . . 6 (((𝐴 Xrm 𝑏) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < (𝐴 Xrm 𝑏)) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)))
195, 7, 17, 18syl3anc 1366 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)))
2015, 19mpbid 222 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))
21 rmspecnonsq 37789 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2221eldifad 3619 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2322adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ)
2423nnred 11073 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℝ)
25 frmy 37796 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 6807 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
271, 26sylan2 490 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℤ)
2827zred 11520 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℝ)
2923nnnn0d 11389 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0)
3029nn0ge0d 11392 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ ((𝐴↑2) − 1))
3116simprd 478 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
3224, 28, 30, 31mulge0d 10642 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))
3324, 28remulcld 10108 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ)
348, 33addge01d 10653 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ↔ ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))))
3532, 34mpbid 222 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
36 rmxp1 37814 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
371, 36sylan2 490 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
3835, 37breqtrrd 4713 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (𝐴 Xrm (𝑏 + 1)))
395, 8, 12, 20, 38ltletrd 10235 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < (𝐴 Xrm (𝑏 + 1)))
40 nn0z 11438 . . . . 5 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
412fovcl 6807 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑎) ∈ ℕ0)
4240, 41sylan2 490 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℕ0)
4342nn0red 11390 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℝ)
44 nn0uz 11760 . . 3 0 = (ℤ‘0)
45 oveq2 6698 . . 3 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
46 oveq2 6698 . . 3 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
47 oveq2 6698 . . 3 (𝑎 = 𝑀 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑀))
48 oveq2 6698 . . 3 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
4939, 43, 44, 45, 46, 47, 48monotuz 37823 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁)))
50493impb 1279 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  2c2 11108  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ↑cexp 12900  ◻NNcsquarenn 37717   Xrm crmx 37781   Yrm crmy 37782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-numer 15490  df-denom 15491  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-squarenn 37722  df-pell1qr 37723  df-pell14qr 37724  df-pell1234qr 37725  df-pellfund 37726  df-rmx 37783  df-rmy 37784 This theorem is referenced by:  lermxnn0  37834
 Copyright terms: Public domain W3C validator