Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvleN Structured version   Visualization version   GIF version

Theorem ltrncnvleN 34234
Description: Less-than or equal property of lattice translation converse. (Contributed by NM, 10-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnle.b 𝐵 = (Base‘𝐾)
ltrnle.l = (le‘𝐾)
ltrnle.h 𝐻 = (LHyp‘𝐾)
ltrnle.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvleN (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Proof of Theorem ltrncnvleN
StepHypRef Expression
1 simp1l 1077 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾𝑉)
2 ltrnle.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2606 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrnle.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 34227 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1073 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐹 ∈ (LAut‘𝐾))
7 simp3 1055 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐵𝑌𝐵))
8 ltrnle.b . . 3 𝐵 = (Base‘𝐾)
9 ltrnle.l . . 3 = (le‘𝐾)
108, 9, 3lautcnvle 34193 . 2 (((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
111, 6, 7, 10syl21anc 1316 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4574  ccnv 5024  cfv 5787  Basecbs 15638  lecple 15718  LHypclh 34088  LAutclaut 34089  LTrncltrn 34205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-map 7720  df-laut 34093  df-ldil 34208  df-ltrn 34209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator