Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoidN Structured version   Visualization version   GIF version

Theorem ltrncoidN 34235
Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoidN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))

Proof of Theorem ltrncoidN
StepHypRef Expression
1 simpl1 1056 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1058 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺𝑇)
3 ltrn1o.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 ltrn1o.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
5 ltrn1o.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 34231 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
71, 2, 6syl2anc 690 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺:𝐵1-1-onto𝐵)
8 f1ococnv1 6063 . . . . . . 7 (𝐺:𝐵1-1-onto𝐵 → (𝐺𝐺) = ( I ↾ 𝐵))
97, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐺𝐺) = ( I ↾ 𝐵))
109coeq2d 5194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
11 simpl2 1057 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹𝑇)
123, 4, 5ltrn1o 34231 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
131, 11, 12syl2anc 690 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
14 f1of 6035 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
15 fcoi1 5976 . . . . . 6 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1613, 14, 153syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1710, 16eqtr2d 2644 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = (𝐹 ∘ (𝐺𝐺)))
18 coass 5557 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
1917, 18syl6eqr 2661 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = ((𝐹𝐺) ∘ 𝐺))
20 simpr 475 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹𝐺) = ( I ↾ 𝐵))
2120coeq1d 5193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → ((𝐹𝐺) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
22 f1of 6035 . . . . 5 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
23 fcoi2 5977 . . . . 5 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
247, 22, 233syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2521, 24eqtrd 2643 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → ((𝐹𝐺) ∘ 𝐺) = 𝐺)
2619, 25eqtrd 2643 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
27 simpr 475 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺)
2827coeq1d 5193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐹𝐺) = (𝐺𝐺))
29 simpl1 1056 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simpl3 1058 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐺𝑇)
3129, 30, 6syl2anc 690 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐺:𝐵1-1-onto𝐵)
32 f1ococnv2 6061 . . . 4 (𝐺:𝐵1-1-onto𝐵 → (𝐺𝐺) = ( I ↾ 𝐵))
3331, 32syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐺𝐺) = ( I ↾ 𝐵))
3428, 33eqtrd 2643 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐹𝐺) = ( I ↾ 𝐵))
3526, 34impbida 872 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   I cid 4938  ccnv 5027  cres 5030  ccom 5032  wf 5786  1-1-ontowf1o 5789  cfv 5790  Basecbs 15641  HLchlt 33458  LHypclh 34091  LTrncltrn 34208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7723  df-laut 34096  df-ldil 34211  df-ltrn 34212
This theorem is referenced by:  tendospcanN  35133
  Copyright terms: Public domain W3C validator