Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnfset Structured version   Visualization version   GIF version

Theorem ltrnfset 35906
 Description: The set of all lattice translations for a lattice 𝐾. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
ltrnfset (𝐾𝐶 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑤,𝐻   𝑓,𝑝,𝑞,𝑤,𝐾
Allowed substitution hints:   𝐴(𝑤,𝑓)   𝐶(𝑤,𝑓,𝑞,𝑝)   𝐻(𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)

Proof of Theorem ltrnfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6352 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ltrnset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2812 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6352 . . . . . 6 (𝑘 = 𝐾 → (LDil‘𝑘) = (LDil‘𝐾))
65fveq1d 6354 . . . . 5 (𝑘 = 𝐾 → ((LDil‘𝑘)‘𝑤) = ((LDil‘𝐾)‘𝑤))
7 fveq2 6352 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
8 ltrnset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8syl6eqr 2812 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
10 fveq2 6352 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
11 ltrnset.l . . . . . . . . . . . 12 = (le‘𝐾)
1210, 11syl6eqr 2812 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
1312breqd 4815 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑤𝑝 𝑤))
1413notbid 307 . . . . . . . . 9 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑤 ↔ ¬ 𝑝 𝑤))
1512breqd 4815 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤𝑞 𝑤))
1615notbid 307 . . . . . . . . 9 (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 𝑤))
1714, 16anbi12d 749 . . . . . . . 8 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) ↔ (¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤)))
18 fveq2 6352 . . . . . . . . . . 11 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
19 ltrnset.m . . . . . . . . . . 11 = (meet‘𝐾)
2018, 19syl6eqr 2812 . . . . . . . . . 10 (𝑘 = 𝐾 → (meet‘𝑘) = )
21 fveq2 6352 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
22 ltrnset.j . . . . . . . . . . . 12 = (join‘𝐾)
2321, 22syl6eqr 2812 . . . . . . . . . . 11 (𝑘 = 𝐾 → (join‘𝑘) = )
2423oveqd 6830 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(join‘𝑘)(𝑓𝑝)) = (𝑝 (𝑓𝑝)))
25 eqidd 2761 . . . . . . . . . 10 (𝑘 = 𝐾𝑤 = 𝑤)
2620, 24, 25oveq123d 6834 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑝 (𝑓𝑝)) 𝑤))
2723oveqd 6830 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑓𝑞)) = (𝑞 (𝑓𝑞)))
2820, 27, 25oveq123d 6834 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))
2926, 28eqeq12d 2775 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤) ↔ ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)))
3017, 29imbi12d 333 . . . . . . 7 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
319, 30raleqbidv 3291 . . . . . 6 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
329, 31raleqbidv 3291 . . . . 5 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
336, 32rabeqbidv 3335 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))} = {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})
344, 33mpteq12dv 4885 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
35 df-ltrn 35894 . . 3 LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}))
36 fvex 6362 . . . . 5 (LHyp‘𝐾) ∈ V
373, 36eqeltri 2835 . . . 4 𝐻 ∈ V
3837mptex 6650 . . 3 (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}) ∈ V
3934, 35, 38fvmpt 6444 . 2 (𝐾 ∈ V → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
401, 39syl 17 1 (𝐾𝐶 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   class class class wbr 4804   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813  lecple 16150  joincjn 17145  meetcmee 17146  Atomscatm 35053  LHypclh 35773  LDilcldil 35889  LTrncltrn 35890 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-ltrn 35894 This theorem is referenced by:  ltrnset  35907
 Copyright terms: Public domain W3C validator