Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnfset Structured version   Visualization version   GIF version

Theorem ltrnfset 37255
Description: The set of all lattice translations for a lattice 𝐾. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
ltrnfset (𝐾𝐶 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑤,𝐻   𝑓,𝑝,𝑞,𝑤,𝐾
Allowed substitution hints:   𝐴(𝑤,𝑓)   𝐶(𝑤,𝑓,𝑞,𝑝)   𝐻(𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)   (𝑤,𝑓,𝑞,𝑝)

Proof of Theorem ltrnfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3514 . 2 (𝐾𝐶𝐾 ∈ V)
2 fveq2 6672 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 ltrnset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2876 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6672 . . . . . 6 (𝑘 = 𝐾 → (LDil‘𝑘) = (LDil‘𝐾))
65fveq1d 6674 . . . . 5 (𝑘 = 𝐾 → ((LDil‘𝑘)‘𝑤) = ((LDil‘𝐾)‘𝑤))
7 fveq2 6672 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
8 ltrnset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
97, 8syl6eqr 2876 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
10 fveq2 6672 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
11 ltrnset.l . . . . . . . . . . . 12 = (le‘𝐾)
1210, 11syl6eqr 2876 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
1312breqd 5079 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑤𝑝 𝑤))
1413notbid 320 . . . . . . . . 9 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑤 ↔ ¬ 𝑝 𝑤))
1512breqd 5079 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(le‘𝑘)𝑤𝑞 𝑤))
1615notbid 320 . . . . . . . . 9 (𝑘 = 𝐾 → (¬ 𝑞(le‘𝑘)𝑤 ↔ ¬ 𝑞 𝑤))
1714, 16anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) ↔ (¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤)))
18 fveq2 6672 . . . . . . . . . . 11 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
19 ltrnset.m . . . . . . . . . . 11 = (meet‘𝐾)
2018, 19syl6eqr 2876 . . . . . . . . . 10 (𝑘 = 𝐾 → (meet‘𝑘) = )
21 fveq2 6672 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
22 ltrnset.j . . . . . . . . . . . 12 = (join‘𝐾)
2321, 22syl6eqr 2876 . . . . . . . . . . 11 (𝑘 = 𝐾 → (join‘𝑘) = )
2423oveqd 7175 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑝(join‘𝑘)(𝑓𝑝)) = (𝑝 (𝑓𝑝)))
25 eqidd 2824 . . . . . . . . . 10 (𝑘 = 𝐾𝑤 = 𝑤)
2620, 24, 25oveq123d 7179 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑝 (𝑓𝑝)) 𝑤))
2723oveqd 7175 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑞(join‘𝑘)(𝑓𝑞)) = (𝑞 (𝑓𝑞)))
2820, 27, 25oveq123d 7179 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))
2926, 28eqeq12d 2839 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤) ↔ ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)))
3017, 29imbi12d 347 . . . . . . 7 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
319, 30raleqbidv 3403 . . . . . 6 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
329, 31raleqbidv 3403 . . . . 5 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))))
336, 32rabeqbidv 3487 . . . 4 (𝑘 = 𝐾 → {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))} = {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})
344, 33mpteq12dv 5153 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
35 df-ltrn 37243 . . 3 LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}))
3634, 35, 3mptfvmpt 6992 . 2 (𝐾 ∈ V → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
371, 36syl 17 1 (𝐾𝐶 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  lecple 16574  joincjn 17556  meetcmee 17557  Atomscatm 36401  LHypclh 37122  LDilcldil 37238  LTrncltrn 37239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-ltrn 37243
This theorem is referenced by:  ltrnset  37256
  Copyright terms: Public domain W3C validator