Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnid Structured version   Visualization version   GIF version

Theorem ltrnid 35739
Description: A lattice translation is the identity function iff all atoms not under the fiducial co-atom 𝑊 are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp-4l 823 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐾 ∈ HL)
2 ltrneq.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 eqid 2651 . . . . . . . . 9 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrneq.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 35727 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
65ad2antrr 762 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simpr 476 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝑥𝐵)
8 simplll 813 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simpllr 815 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝐹𝑇)
10 ltrneq.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
11 ltrneq.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
1210, 11atbase 34894 . . . . . . . . . . . . . 14 (𝑝𝐴𝑝𝐵)
1312ad2antlr 763 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝𝐵)
14 simpr 476 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝 𝑊)
15 ltrneq.l . . . . . . . . . . . . . 14 = (le‘𝐾)
1610, 15, 2, 4ltrnval1 35738 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐵𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
178, 9, 13, 14, 16syl112anc 1370 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐹𝑝) = 𝑝)
1817ex 449 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = 𝑝))
19 pm2.61 183 . . . . . . . . . . 11 ((𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2018, 19syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2120ralimdva 2991 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝))
2221imp 444 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2322adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2410, 11, 3lauteq 35699 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝑥𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑥) = 𝑥)
251, 6, 7, 23, 24syl31anc 1369 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = 𝑥)
26 fvresi 6480 . . . . . . 7 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2726adantl 481 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2825, 27eqtr4d 2688 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
2928ralrimiva 2995 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
3010, 2, 4ltrn1o 35728 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
3130adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹:𝐵1-1-onto𝐵)
32 f1ofn 6176 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹 Fn 𝐵)
3331, 32syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 Fn 𝐵)
34 fnresi 6046 . . . . 5 ( I ↾ 𝐵) Fn 𝐵
35 eqfnfv 6351 . . . . 5 ((𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵) Fn 𝐵) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3633, 34, 35sylancl 695 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3729, 36mpbird 247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 = ( I ↾ 𝐵))
3837ex 449 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → 𝐹 = ( I ↾ 𝐵)))
3912adantl 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → 𝑝𝐵)
40 fvresi 6480 . . . . . 6 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
4139, 40syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
42 fveq1 6228 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = (( I ↾ 𝐵)‘𝑝))
4342eqeq1d 2653 . . . . 5 (𝐹 = ( I ↾ 𝐵) → ((𝐹𝑝) = 𝑝 ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
4441, 43syl5ibrcom 237 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = 𝑝))
4544a1dd 50 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4645ralrimdva 2998 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4738, 46impbid 202 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941   class class class wbr 4685   I cid 5052  cres 5145   Fn wfn 5921  1-1-ontowf1o 5925  cfv 5926  Basecbs 15904  lecple 15995  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LAutclaut 35589  LTrncltrn 35705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-laut 35593  df-ldil 35708  df-ltrn 35709
This theorem is referenced by:  ltrnnid  35740
  Copyright terms: Public domain W3C validator