Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnid Structured version   Visualization version   GIF version

Theorem ltrnid 34235
Description: A lattice translation is the identity function iff all atoms not under the fiducial co-atom 𝑊 are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp-4l 801 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐾 ∈ HL)
2 ltrneq.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 eqid 2609 . . . . . . . . 9 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrneq.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 34223 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
65ad2antrr 757 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simpr 475 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝑥𝐵)
8 simplll 793 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simpllr 794 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝐹𝑇)
10 ltrneq.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
11 ltrneq.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
1210, 11atbase 33390 . . . . . . . . . . . . . 14 (𝑝𝐴𝑝𝐵)
1312ad2antlr 758 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝𝐵)
14 simpr 475 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝 𝑊)
15 ltrneq.l . . . . . . . . . . . . . 14 = (le‘𝐾)
1610, 15, 2, 4ltrnval1 34234 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐵𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
178, 9, 13, 14, 16syl112anc 1321 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐹𝑝) = 𝑝)
1817ex 448 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = 𝑝))
19 pm2.61 181 . . . . . . . . . . 11 ((𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2018, 19syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2120ralimdva 2944 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝))
2221imp 443 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2322adantr 479 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2410, 11, 3lauteq 34195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝑥𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑥) = 𝑥)
251, 6, 7, 23, 24syl31anc 1320 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = 𝑥)
26 fvresi 6322 . . . . . . 7 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2726adantl 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2825, 27eqtr4d 2646 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
2928ralrimiva 2948 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
3010, 2, 4ltrn1o 34224 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
3130adantr 479 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹:𝐵1-1-onto𝐵)
32 f1ofn 6036 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹 Fn 𝐵)
3331, 32syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 Fn 𝐵)
34 fnresi 5908 . . . . 5 ( I ↾ 𝐵) Fn 𝐵
35 eqfnfv 6204 . . . . 5 ((𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵) Fn 𝐵) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3633, 34, 35sylancl 692 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3729, 36mpbird 245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 = ( I ↾ 𝐵))
3837ex 448 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → 𝐹 = ( I ↾ 𝐵)))
3912adantl 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → 𝑝𝐵)
40 fvresi 6322 . . . . . 6 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
4139, 40syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
42 fveq1 6087 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = (( I ↾ 𝐵)‘𝑝))
4342eqeq1d 2611 . . . . 5 (𝐹 = ( I ↾ 𝐵) → ((𝐹𝑝) = 𝑝 ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
4441, 43syl5ibrcom 235 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = 𝑝))
4544a1dd 47 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4645ralrimdva 2951 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4738, 46impbid 200 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895   class class class wbr 4577   I cid 4938  cres 5030   Fn wfn 5785  1-1-ontowf1o 5789  cfv 5790  Basecbs 15641  lecple 15721  Atomscatm 33364  HLchlt 33451  LHypclh 34084  LAutclaut 34085  LTrncltrn 34201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7723  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-laut 34089  df-ldil 34204  df-ltrn 34205
This theorem is referenced by:  ltrnnid  34236
  Copyright terms: Public domain W3C validator