Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnideq Structured version   Visualization version   GIF version

Theorem ltrnideq 34263
Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012.)
Hypotheses
Ref Expression
ltrnnidn.b 𝐵 = (Base‘𝐾)
ltrnnidn.l = (le‘𝐾)
ltrnnidn.a 𝐴 = (Atoms‘𝐾)
ltrnnidn.h 𝐻 = (LHyp‘𝐾)
ltrnnidn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnideq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))

Proof of Theorem ltrnideq
StepHypRef Expression
1 simpr 475 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
21fveq1d 6089 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝑃) = (( I ↾ 𝐵)‘𝑃))
3 simpl3l 1108 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑃𝐴)
4 ltrnnidn.b . . . . . 6 𝐵 = (Base‘𝐾)
5 ltrnnidn.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 33377 . . . . 5 (𝑃𝐴𝑃𝐵)
7 fvresi 6321 . . . . 5 (𝑃𝐵 → (( I ↾ 𝐵)‘𝑃) = 𝑃)
83, 6, 73syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵)‘𝑃) = 𝑃)
92, 8eqtrd 2643 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝑃) = 𝑃)
109ex 448 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑃) = 𝑃))
11 simpl1 1056 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simpl2 1057 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
13 simpr 475 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
14 simpl3 1058 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
15 ltrnnidn.l . . . . . 6 = (le‘𝐾)
16 ltrnnidn.h . . . . . 6 𝐻 = (LHyp‘𝐾)
17 ltrnnidn.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
184, 15, 5, 16, 17ltrnnidn 34262 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ≠ 𝑃)
1911, 12, 13, 14, 18syl121anc 1322 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐹𝑃) ≠ 𝑃)
2019ex 448 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 ≠ ( I ↾ 𝐵) → (𝐹𝑃) ≠ 𝑃))
2120necon4d 2805 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) = 𝑃𝐹 = ( I ↾ 𝐵)))
2210, 21impbid 200 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577   I cid 4937  cres 5029  cfv 5789  Basecbs 15643  lecple 15723  Atomscatm 33351  HLchlt 33438  LHypclh 34071  LTrncltrn 34188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-map 7723  df-preset 16699  df-poset 16717  df-plt 16729  df-lub 16745  df-glb 16746  df-join 16747  df-meet 16748  df-p0 16810  df-p1 16811  df-lat 16817  df-clat 16879  df-oposet 33264  df-ol 33266  df-oml 33267  df-covers 33354  df-ats 33355  df-atl 33386  df-cvlat 33410  df-hlat 33439  df-lhyp 34075  df-laut 34076  df-ldil 34191  df-ltrn 34192  df-trl 34247
This theorem is referenced by:  trlid0  34264  trlnidatb  34265  ltrn2ateq  34268  cdlemd8  34293  ltrniotaidvalN  34672  cdlemkid4  35023  dia2dimlem7  35160
  Copyright terms: Public domain W3C validator