Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnj Structured version   Visualization version   GIF version

Theorem ltrnj 35736
Description: Lattice translation of a meet. TODO: change antecedent to 𝐾 ∈ HL (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
ltrnj.b 𝐵 = (Base‘𝐾)
ltrnj.j = (join‘𝐾)
ltrnj.h 𝐻 = (LHyp‘𝐾)
ltrnj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnj (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem ltrnj
StepHypRef Expression
1 simp1l 1105 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 hllat 34968 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 ltrnj.h . . . 4 𝐻 = (LHyp‘𝐾)
5 eqid 2651 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
6 ltrnj.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
74, 5, 6ltrnlaut 35727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
873adant3 1101 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐹 ∈ (LAut‘𝐾))
9 simp3l 1109 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
10 simp3r 1110 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
11 ltrnj.b . . 3 𝐵 = (Base‘𝐾)
12 ltrnj.j . . 3 = (join‘𝐾)
1311, 12, 5lautj 35697 . 2 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
143, 8, 9, 10, 13syl13anc 1368 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  joincjn 16991  Latclat 17092  HLchlt 34955  LHypclh 35588  LAutclaut 35589  LTrncltrn 35705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-preset 16975  df-poset 16993  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-lat 17093  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-laut 35593  df-ldil 35708  df-ltrn 35709
This theorem is referenced by:  cdlemc2  35797  cdlemd2  35804  cdlemg2l  36208  cdlemg17h  36273  cdlemg17  36282
  Copyright terms: Public domain W3C validator