![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnj | Structured version Visualization version GIF version |
Description: Lattice translation of a meet. TODO: change antecedent to 𝐾 ∈ HL (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnj.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnj.j | ⊢ ∨ = (join‘𝐾) |
ltrnj.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnj.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnj | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1105 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
2 | hllat 34968 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ Lat) |
4 | ltrnj.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | eqid 2651 | . . . 4 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
6 | ltrnj.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 4, 5, 6 | ltrnlaut 35727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
8 | 7 | 3adant3 1101 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹 ∈ (LAut‘𝐾)) |
9 | simp3l 1109 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
10 | simp3r 1110 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
11 | ltrnj.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
12 | ltrnj.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
13 | 11, 12, 5 | lautj 35697 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) |
14 | 3, 8, 9, 10, 13 | syl13anc 1368 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) ∨ (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 joincjn 16991 Latclat 17092 HLchlt 34955 LHypclh 35588 LAutclaut 35589 LTrncltrn 35705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-preset 16975 df-poset 16993 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-lat 17093 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-laut 35593 df-ldil 35708 df-ltrn 35709 |
This theorem is referenced by: cdlemc2 35797 cdlemd2 35804 cdlemg2l 36208 cdlemg17h 36273 cdlemg17 36282 |
Copyright terms: Public domain | W3C validator |