Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnm Structured version   Visualization version   GIF version

Theorem ltrnm 34218
Description: Lattice translation of a meet. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnm.b 𝐵 = (Base‘𝐾)
ltrnm.m = (meet‘𝐾)
ltrnm.h 𝐻 = (LHyp‘𝐾)
ltrnm.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem ltrnm
StepHypRef Expression
1 simp1l 1077 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 hllat 33451 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 ltrnm.h . . . 4 𝐻 = (LHyp‘𝐾)
5 eqid 2609 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
6 ltrnm.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
74, 5, 6ltrnlaut 34210 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
873adant3 1073 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐹 ∈ (LAut‘𝐾))
9 simp3l 1081 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
10 simp3r 1082 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
11 ltrnm.b . . 3 𝐵 = (Base‘𝐾)
12 ltrnm.m . . 3 = (meet‘𝐾)
1311, 12, 5lautm 34181 . 2 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
143, 8, 9, 10, 13syl13anc 1319 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cfv 5789  (class class class)co 6526  Basecbs 15643  meetcmee 16716  Latclat 16816  HLchlt 33438  LHypclh 34071  LAutclaut 34072  LTrncltrn 34188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-map 7723  df-preset 16699  df-poset 16717  df-lub 16745  df-glb 16746  df-join 16747  df-meet 16748  df-lat 16817  df-atl 33386  df-cvlat 33410  df-hlat 33439  df-laut 34076  df-ldil 34191  df-ltrn 34192
This theorem is referenced by:  ltrnmwOLD  34239  cdlemd2  34287  cdlemg17  34766
  Copyright terms: Public domain W3C validator