Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnm Structured version   Visualization version   GIF version

Theorem ltrnm 35918
Description: Lattice translation of a meet. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnm.b 𝐵 = (Base‘𝐾)
ltrnm.m = (meet‘𝐾)
ltrnm.h 𝐻 = (LHyp‘𝐾)
ltrnm.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnm (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem ltrnm
StepHypRef Expression
1 simp1l 1240 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 hllat 35151 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐾 ∈ Lat)
4 ltrnm.h . . . 4 𝐻 = (LHyp‘𝐾)
5 eqid 2758 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
6 ltrnm.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
74, 5, 6ltrnlaut 35910 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
873adant3 1127 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝐹 ∈ (LAut‘𝐾))
9 simp3l 1244 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
10 simp3r 1245 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
11 ltrnm.b . . 3 𝐵 = (Base‘𝐾)
12 ltrnm.m . . 3 = (meet‘𝐾)
1311, 12, 5lautm 35881 . 2 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (LAut‘𝐾) ∧ 𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
143, 8, 9, 10, 13syl13anc 1479 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  cfv 6047  (class class class)co 6811  Basecbs 16057  meetcmee 17144  Latclat 17244  HLchlt 35138  LHypclh 35771  LAutclaut 35772  LTrncltrn 35888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-map 8023  df-preset 17127  df-poset 17145  df-lub 17173  df-glb 17174  df-join 17175  df-meet 17176  df-lat 17245  df-atl 35086  df-cvlat 35110  df-hlat 35139  df-laut 35776  df-ldil 35891  df-ltrn 35892
This theorem is referenced by:  ltrnmwOLD  35939  cdlemd2  35987  cdlemg17  36465
  Copyright terms: Public domain W3C validator