MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubaddd Structured version   Visualization version   GIF version

Theorem ltsubaddd 10567
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ltsubaddd (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))

Proof of Theorem ltsubaddd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ltadd1d.3 . 2 (𝜑𝐶 ∈ ℝ)
4 ltsubadd 10442 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
51, 2, 3, 4syl3anc 1323 1 (𝜑 → ((𝐴𝐵) < 𝐶𝐴 < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1987   class class class wbr 4613  (class class class)co 6604  cr 9879   + caddc 9883   < clt 10018  cmin 10210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-sub 10212  df-neg 10213
This theorem is referenced by:  sublt0d  10597  ltaddsublt  10598  supaddc  10934  suprzcl  11401  2submod  12671  hashdvds  15404  prmreclem6  15549  4sqlem6  15571  ovolshftlem1  23184  opnmbllem  23275  mbfaddlem  23333  itg2monolem1  23423  dvlt0  23672  lhop1  23681  plydivlem3  23954  efif1olem1  24192  ang180lem2  24440  atanlogsublem  24542  bposlem1  24909  crctcshwlkn0lem5  26575  eucrctshift  26969  bcm1n  29392  subfacval3  30876  opnmbllem0  33074  itg2addnclem  33090  itg2gt0cn  33094  iooiinicc  39177  0ellimcdiv  39282  wallispilem3  39588  fourierdlem41  39669  fourierdlem49  39676  fourierdlem97  39724  elaa2lem  39754  sge0ltfirp  39921  sfprmdvdsmersenne  40816  proththdlem  40826  ltsubaddb  41589  ltsubsubb  41590  ltsubadd2b  41591
  Copyright terms: Public domain W3C validator