MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubub Structured version   Visualization version   GIF version

Theorem lubub 17340
Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubub ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑋 (𝑈𝑆))

Proof of Theorem lubub
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lublem.b . . . 4 𝐵 = (Base‘𝐾)
2 lublem.l . . . 4 = (le‘𝐾)
3 lublem.u . . . 4 𝑈 = (lub‘𝐾)
41, 2, 3lublem 17339 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
54simpld 477 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ∀𝑦𝑆 𝑦 (𝑈𝑆))
6 breq1 4807 . . 3 (𝑦 = 𝑋 → (𝑦 (𝑈𝑆) ↔ 𝑋 (𝑈𝑆)))
76rspccva 3448 . 2 ((∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ 𝑋𝑆) → 𝑋 (𝑈𝑆))
85, 7stoic3 1850 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑋 (𝑈𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wss 3715   class class class wbr 4804  cfv 6049  Basecbs 16079  lecple 16170  lubclub 17163  CLatccla 17328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-lub 17195  df-clat 17329
This theorem is referenced by:  lubss  17342
  Copyright terms: Public domain W3C validator