MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecprop2d Structured version   Visualization version   GIF version

Theorem lvecprop2d 19940
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 19941 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lvecprop2d.b1 (𝜑𝐵 = (Base‘𝐾))
lvecprop2d.b2 (𝜑𝐵 = (Base‘𝐿))
lvecprop2d.f 𝐹 = (Scalar‘𝐾)
lvecprop2d.g 𝐺 = (Scalar‘𝐿)
lvecprop2d.p1 (𝜑𝑃 = (Base‘𝐹))
lvecprop2d.p2 (𝜑𝑃 = (Base‘𝐺))
lvecprop2d.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lvecprop2d.2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
lvecprop2d.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
lvecprop2d.4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lvecprop2d (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦

Proof of Theorem lvecprop2d
StepHypRef Expression
1 lvecprop2d.b1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 lvecprop2d.b2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 lvecprop2d.f . . . 4 𝐹 = (Scalar‘𝐾)
4 lvecprop2d.g . . . 4 𝐺 = (Scalar‘𝐿)
5 lvecprop2d.p1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
6 lvecprop2d.p2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
7 lvecprop2d.1 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
8 lvecprop2d.2 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
9 lvecprop2d.3 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
10 lvecprop2d.4 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10lmodprop2d 19698 . . 3 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
125, 6, 8, 9drngpropd 19531 . . 3 (𝜑 → (𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing))
1311, 12anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing)))
143islvec 19878 . 2 (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing))
154islvec 19878 . 2 (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing))
1613, 14, 153bitr4g 316 1 (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  DivRingcdr 19504  LModclmod 19636  LVecclvec 19876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-drng 19506  df-lmod 19638  df-lvec 19877
This theorem is referenced by:  hlhillvec  39089
  Copyright terms: Public domain W3C validator