MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan2 Structured version   Visualization version   GIF version

Theorem lvecvscan2 19031
Description: Cancellation law for scalar multiplication. (hvmulcan2 27779 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan2.v 𝑉 = (Base‘𝑊)
lvecmulcan2.s · = ( ·𝑠𝑊)
lvecmulcan2.f 𝐹 = (Scalar‘𝑊)
lvecmulcan2.k 𝐾 = (Base‘𝐹)
lvecmulcan2.o 0 = (0g𝑊)
lvecmulcan2.w (𝜑𝑊 ∈ LVec)
lvecmulcan2.a (𝜑𝐴𝐾)
lvecmulcan2.b (𝜑𝐵𝐾)
lvecmulcan2.x (𝜑𝑋𝑉)
lvecmulcan2.n (𝜑𝑋0 )
Assertion
Ref Expression
lvecvscan2 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))

Proof of Theorem lvecvscan2
StepHypRef Expression
1 lvecmulcan2.n . . . . 5 (𝜑𝑋0 )
21neneqd 2795 . . . 4 (𝜑 → ¬ 𝑋 = 0 )
3 biorf 420 . . . . 5 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ (𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹))))
4 orcom 402 . . . . 5 ((𝑋 = 0 ∨ (𝐴(-g𝐹)𝐵) = (0g𝐹)) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 ))
53, 4syl6bb 276 . . . 4 𝑋 = 0 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
62, 5syl 17 . . 3 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
7 lvecmulcan2.v . . . 4 𝑉 = (Base‘𝑊)
8 lvecmulcan2.s . . . 4 · = ( ·𝑠𝑊)
9 lvecmulcan2.f . . . 4 𝐹 = (Scalar‘𝑊)
10 lvecmulcan2.k . . . 4 𝐾 = (Base‘𝐹)
11 eqid 2621 . . . 4 (0g𝐹) = (0g𝐹)
12 lvecmulcan2.o . . . 4 0 = (0g𝑊)
13 lvecmulcan2.w . . . 4 (𝜑𝑊 ∈ LVec)
14 lveclmod 19025 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1513, 14syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
169lmodfgrp 18793 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
18 lvecmulcan2.a . . . . 5 (𝜑𝐴𝐾)
19 lvecmulcan2.b . . . . 5 (𝜑𝐵𝐾)
20 eqid 2621 . . . . . 6 (-g𝐹) = (-g𝐹)
2110, 20grpsubcl 17416 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
2217, 18, 19, 21syl3anc 1323 . . . 4 (𝜑 → (𝐴(-g𝐹)𝐵) ∈ 𝐾)
23 lvecmulcan2.x . . . 4 (𝜑𝑋𝑉)
247, 8, 9, 10, 11, 12, 13, 22, 23lvecvs0or 19027 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴(-g𝐹)𝐵) = (0g𝐹) ∨ 𝑋 = 0 )))
25 eqid 2621 . . . . 5 (-g𝑊) = (-g𝑊)
267, 8, 9, 10, 25, 20, 15, 18, 19, 23lmodsubdir 18842 . . . 4 (𝜑 → ((𝐴(-g𝐹)𝐵) · 𝑋) = ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)))
2726eqeq1d 2623 . . 3 (𝜑 → (((𝐴(-g𝐹)𝐵) · 𝑋) = 0 ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ))
286, 24, 273bitr2rd 297 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴(-g𝐹)𝐵) = (0g𝐹)))
297, 9, 8, 10lmodvscl 18801 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
3015, 18, 23, 29syl3anc 1323 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
317, 9, 8, 10lmodvscl 18801 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
3215, 19, 23, 31syl3anc 1323 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
337, 12, 25lmodsubeq0 18843 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3415, 30, 32, 33syl3anc 1323 . 2 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐵 · 𝑋)) = 0 ↔ (𝐴 · 𝑋) = (𝐵 · 𝑋)))
3510, 11, 20grpsubeq0 17422 . . 3 ((𝐹 ∈ Grp ∧ 𝐴𝐾𝐵𝐾) → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3617, 18, 19, 35syl3anc 1323 . 2 (𝜑 → ((𝐴(-g𝐹)𝐵) = (0g𝐹) ↔ 𝐴 = 𝐵))
3728, 34, 363bitr3d 298 1 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383   = wceq 1480  wcel 1987  wne 2790  cfv 5847  (class class class)co 6604  Basecbs 15781  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  Grpcgrp 17343  -gcsg 17345  LModclmod 18784  LVecclvec 19021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-lmod 18786  df-lvec 19022
This theorem is referenced by:  lspsneu  19042  lvecindp  19057  lvecindp2  19058  lshpsmreu  33876  lshpkrlem5  33881  hgmapval1  36665  hgmapadd  36666  hgmapmul  36667  hgmaprnlem1N  36668  hgmap11  36674
  Copyright terms: Public domain W3C validator